| Safe Haskell | Safe-Inferred |
|---|---|
| Language | Haskell2010 |
Psi.Data
Synopsis
- module Data.Bifunctor
- module Data.Bool
- module Data.Either
- module Data.Eq
- module Data.Int
- module Data.Traversable
- module GHC.Float
- module GHC.Num
- module GHC.Real
- deepseq :: NFData a => a -> b -> b
- data Char
- data Maybe a
- data Word8
- data Solo a where
- data Word
- data Ordering
- data Word64
- data Word32
- data Word16
- mapMaybe :: (a -> Maybe b) -> [a] -> [b]
- (<$>) :: Functor f => (a -> b) -> f a -> f b
- uncurry :: (a -> b -> c) -> (a, b) -> c
- seq :: a -> b -> b
- class Eq a => Ord a where
- class Functor (f :: Type -> Type) where
- (<>) :: Semigroup a => a -> a -> a
- class Bounded a where
- class Enum a
- data Text
- getSolo :: Solo a -> a
- ($!) :: (a -> b) -> a -> b
- maybe :: b -> (a -> b) -> Maybe a -> b
- isJust :: Maybe a -> Bool
- isNothing :: Maybe a -> Bool
- fromMaybe :: a -> Maybe a -> a
- maybeToList :: Maybe a -> [a]
- listToMaybe :: [a] -> Maybe a
- catMaybes :: [Maybe a] -> [a]
- fst :: (a, b) -> a
- snd :: (a, b) -> b
- curry :: ((a, b) -> c) -> a -> b -> c
- swap :: (a, b) -> (b, a)
- ($>) :: Functor f => f a -> b -> f b
- void :: Functor f => f a -> f ()
- newtype Down a = Down {
- getDown :: a
- comparing :: Ord a => (b -> a) -> b -> b -> Ordering
- data ByteString
- class NFData a where
- rnf :: a -> ()
- ($!!) :: NFData a => (a -> b) -> a -> b
- force :: NFData a => a -> a
Documentation
module Data.Bifunctor
module Data.Bool
module Data.Either
module Data.Eq
module Data.Int
module Data.Traversable
module GHC.Float
module GHC.Num
module GHC.Real
deepseq :: NFData a => a -> b -> b infixr 0 #
deepseq: fully evaluates the first argument, before returning the
second.
The name deepseq is used to illustrate the relationship to seq:
where seq is shallow in the sense that it only evaluates the top
level of its argument, deepseq traverses the entire data structure
evaluating it completely.
deepseq can be useful for forcing pending exceptions,
eradicating space leaks, or forcing lazy I/O to happen. It is
also useful in conjunction with parallel Strategies (see the
parallel package).
There is no guarantee about the ordering of evaluation. The
implementation may evaluate the components of the structure in
any order or in parallel. To impose an actual order on
evaluation, use pseq from Control.Parallel in the
parallel package.
Since: deepseq-1.1.0.0
The character type Char represents Unicode codespace
and its elements are code points as in definitions
D9 and D10 of the Unicode Standard.
Character literals in Haskell are single-quoted: 'Q', 'Я' or 'Ω'.
To represent a single quote itself use '\'', and to represent a backslash
use '\\'. The full grammar can be found in the section 2.6 of the
Haskell 2010 Language Report.
To specify a character by its code point one can use decimal, hexadecimal
or octal notation: '\65', '\x41' and '\o101' are all alternative forms
of 'A'. The largest code point is '\x10ffff'.
There is a special escape syntax for ASCII control characters:
| Escape | Alternatives | Meaning |
|---|---|---|
'\NUL' | '\0' | null character |
'\SOH' | '\1' | start of heading |
'\STX' | '\2' | start of text |
'\ETX' | '\3' | end of text |
'\EOT' | '\4' | end of transmission |
'\ENQ' | '\5' | enquiry |
'\ACK' | '\6' | acknowledge |
'\BEL' | '\7', '\a' | bell (alert) |
'\BS' | '\8', '\b' | backspace |
'\HT' | '\9', '\t' | horizontal tab |
'\LF' | '\10', '\n' | line feed (new line) |
'\VT' | '\11', '\v' | vertical tab |
'\FF' | '\12', '\f' | form feed |
'\CR' | '\13', '\r' | carriage return |
'\SO' | '\14' | shift out |
'\SI' | '\15' | shift in |
'\DLE' | '\16' | data link escape |
'\DC1' | '\17' | device control 1 |
'\DC2' | '\18' | device control 2 |
'\DC3' | '\19' | device control 3 |
'\DC4' | '\20' | device control 4 |
'\NAK' | '\21' | negative acknowledge |
'\SYN' | '\22' | synchronous idle |
'\ETB' | '\23' | end of transmission block |
'\CAN' | '\24' | cancel |
'\EM' | '\25' | end of medium |
'\SUB' | '\26' | substitute |
'\ESC' | '\27' | escape |
'\FS' | '\28' | file separator |
'\GS' | '\29' | group separator |
'\RS' | '\30' | record separator |
'\US' | '\31' | unit separator |
'\SP' | '\32', ' ' | space |
'\DEL' | '\127' | delete |
Instances
| Data Char | Since: base-4.0.0.0 | ||||
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Char -> c Char # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Char # dataTypeOf :: Char -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Char) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Char) # gmapT :: (forall b. Data b => b -> b) -> Char -> Char # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Char -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Char -> r # gmapQ :: (forall d. Data d => d -> u) -> Char -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Char -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Char -> m Char # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Char -> m Char # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Char -> m Char # | |||||
| Storable Char | Since: base-2.1 | ||||
Defined in Foreign.Storable | |||||
| Bounded Char | Since: base-2.1 | ||||
| Enum Char | Since: base-2.1 | ||||
| Ix Char | Since: base-2.1 | ||||
| Read Char | Since: base-2.1 | ||||
| Show Char | Since: base-2.1 | ||||
| IsChar Char | Since: base-2.1 | ||||
| PrintfArg Char | Since: base-2.1 | ||||
Defined in Text.Printf | |||||
| NFData Char | |||||
Defined in Control.DeepSeq | |||||
| Eq Char | |||||
| Ord Char | |||||
| TestCoercion SChar | Since: base-4.18.0.0 | ||||
Defined in GHC.TypeLits | |||||
| TestEquality SChar | Since: base-4.18.0.0 | ||||
Defined in GHC.TypeLits | |||||
| Generic1 (URec Char :: k -> Type) | |||||
Defined in GHC.Generics Associated Types
| |||||
| Foldable (UChar :: Type -> Type) | Since: base-4.9.0.0 | ||||
Defined in Data.Foldable Methods fold :: Monoid m => UChar m -> m # foldMap :: Monoid m => (a -> m) -> UChar a -> m # foldMap' :: Monoid m => (a -> m) -> UChar a -> m # foldr :: (a -> b -> b) -> b -> UChar a -> b # foldr' :: (a -> b -> b) -> b -> UChar a -> b # foldl :: (b -> a -> b) -> b -> UChar a -> b # foldl' :: (b -> a -> b) -> b -> UChar a -> b # foldr1 :: (a -> a -> a) -> UChar a -> a # foldl1 :: (a -> a -> a) -> UChar a -> a # elem :: Eq a => a -> UChar a -> Bool # maximum :: Ord a => UChar a -> a # minimum :: Ord a => UChar a -> a # | |||||
| Traversable (UChar :: Type -> Type) | Since: base-4.9.0.0 | ||||
| Functor (URec Char :: Type -> Type) | Since: base-4.9.0.0 | ||||
| Generic (URec Char p) | |||||
Defined in GHC.Generics Associated Types
| |||||
| Show (URec Char p) | Since: base-4.9.0.0 | ||||
| Eq (URec Char p) | Since: base-4.9.0.0 | ||||
| Ord (URec Char p) | Since: base-4.9.0.0 | ||||
Defined in GHC.Generics | |||||
| data URec Char (p :: k) | Used for marking occurrences of Since: base-4.9.0.0 | ||||
| type Compare (a :: Char) (b :: Char) | |||||
Defined in Data.Type.Ord | |||||
| type Rep1 (URec Char :: k -> Type) | Since: base-4.9.0.0 | ||||
Defined in GHC.Generics | |||||
| type Rep (URec Char p) | Since: base-4.9.0.0 | ||||
Defined in GHC.Generics | |||||
The Maybe type encapsulates an optional value. A value of type
either contains a value of type Maybe aa (represented as ),
or it is empty (represented as Just aNothing). Using Maybe is a good way to
deal with errors or exceptional cases without resorting to drastic
measures such as error.
The Maybe type is also a monad. It is a simple kind of error
monad, where all errors are represented by Nothing. A richer
error monad can be built using the Either type.
Instances
| MonadFail Maybe | Since: base-4.9.0.0 | ||||
Defined in Control.Monad.Fail | |||||
| MonadFix Maybe | Since: base-2.1 | ||||
Defined in Control.Monad.Fix | |||||
| MonadZip Maybe | Since: base-4.8.0.0 | ||||
| Foldable Maybe | Since: base-2.1 | ||||
Defined in Data.Foldable Methods fold :: Monoid m => Maybe m -> m # foldMap :: Monoid m => (a -> m) -> Maybe a -> m # foldMap' :: Monoid m => (a -> m) -> Maybe a -> m # foldr :: (a -> b -> b) -> b -> Maybe a -> b # foldr' :: (a -> b -> b) -> b -> Maybe a -> b # foldl :: (b -> a -> b) -> b -> Maybe a -> b # foldl' :: (b -> a -> b) -> b -> Maybe a -> b # foldr1 :: (a -> a -> a) -> Maybe a -> a # foldl1 :: (a -> a -> a) -> Maybe a -> a # elem :: Eq a => a -> Maybe a -> Bool # maximum :: Ord a => Maybe a -> a # minimum :: Ord a => Maybe a -> a # | |||||
| Eq1 Maybe | Since: base-4.9.0.0 | ||||
| Ord1 Maybe | Since: base-4.9.0.0 | ||||
Defined in Data.Functor.Classes | |||||
| Read1 Maybe | Since: base-4.9.0.0 | ||||
Defined in Data.Functor.Classes | |||||
| Show1 Maybe | Since: base-4.9.0.0 | ||||
| Traversable Maybe | Since: base-2.1 | ||||
| Alternative Maybe | Picks the leftmost Since: base-2.1 | ||||
| Applicative Maybe | Since: base-2.1 | ||||
| Functor Maybe | Since: base-2.1 | ||||
| Monad Maybe | Since: base-2.1 | ||||
| MonadPlus Maybe | Picks the leftmost Since: base-2.1 | ||||
| NFData1 Maybe | Since: deepseq-1.4.3.0 | ||||
Defined in Control.DeepSeq | |||||
| Generic1 Maybe | |||||
Defined in GHC.Generics | |||||
| Data a => Data (Maybe a) | Since: base-4.0.0.0 | ||||
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Maybe a -> c (Maybe a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Maybe a) # toConstr :: Maybe a -> Constr # dataTypeOf :: Maybe a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Maybe a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Maybe a)) # gmapT :: (forall b. Data b => b -> b) -> Maybe a -> Maybe a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Maybe a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Maybe a -> r # gmapQ :: (forall d. Data d => d -> u) -> Maybe a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Maybe a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) # | |||||
| Semigroup a => Monoid (Maybe a) | Lift a semigroup into Since 4.11.0: constraint on inner Since: base-2.1 | ||||
| Semigroup a => Semigroup (Maybe a) | Since: base-4.9.0.0 | ||||
| Generic (Maybe a) | |||||
Defined in GHC.Generics Associated Types
| |||||
| SingKind a => SingKind (Maybe a) | Since: base-4.9.0.0 | ||||
Defined in GHC.Generics Associated Types
| |||||
| Read a => Read (Maybe a) | Since: base-2.1 | ||||
| Show a => Show (Maybe a) | Since: base-2.1 | ||||
| NFData a => NFData (Maybe a) | |||||
Defined in Control.DeepSeq | |||||
| Eq a => Eq (Maybe a) | Since: base-2.1 | ||||
| Ord a => Ord (Maybe a) | Since: base-2.1 | ||||
| SingI ('Nothing :: Maybe a) | Since: base-4.9.0.0 | ||||
Defined in GHC.Generics | |||||
| SingI a2 => SingI ('Just a2 :: Maybe a1) | Since: base-4.9.0.0 | ||||
Defined in GHC.Generics | |||||
| type Rep1 Maybe | Since: base-4.6.0.0 | ||||
| type DemoteRep (Maybe a) | |||||
Defined in GHC.Generics | |||||
| type Rep (Maybe a) | Since: base-4.6.0.0 | ||||
Defined in GHC.Generics | |||||
| data Sing (b :: Maybe a) | |||||
8-bit unsigned integer type
Instances
| Data Word8 | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word8 -> c Word8 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word8 # dataTypeOf :: Word8 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Word8) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word8) # gmapT :: (forall b. Data b => b -> b) -> Word8 -> Word8 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word8 -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word8 -> r # gmapQ :: (forall d. Data d => d -> u) -> Word8 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Word8 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word8 -> m Word8 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word8 -> m Word8 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word8 -> m Word8 # | |
| Storable Word8 | Since: base-2.1 |
| Bits Word8 | Since: base-2.1 |
Defined in GHC.Word Methods (.&.) :: Word8 -> Word8 -> Word8 # (.|.) :: Word8 -> Word8 -> Word8 # xor :: Word8 -> Word8 -> Word8 # complement :: Word8 -> Word8 # shift :: Word8 -> Int -> Word8 # rotate :: Word8 -> Int -> Word8 # setBit :: Word8 -> Int -> Word8 # clearBit :: Word8 -> Int -> Word8 # complementBit :: Word8 -> Int -> Word8 # testBit :: Word8 -> Int -> Bool # bitSizeMaybe :: Word8 -> Maybe Int # shiftL :: Word8 -> Int -> Word8 # unsafeShiftL :: Word8 -> Int -> Word8 # shiftR :: Word8 -> Int -> Word8 # unsafeShiftR :: Word8 -> Int -> Word8 # rotateL :: Word8 -> Int -> Word8 # | |
| FiniteBits Word8 | Since: base-4.6.0.0 |
Defined in GHC.Word Methods finiteBitSize :: Word8 -> Int # countLeadingZeros :: Word8 -> Int # countTrailingZeros :: Word8 -> Int # | |
| Bounded Word8 | Since: base-2.1 |
| Enum Word8 | Since: base-2.1 |
| Ix Word8 | Since: base-2.1 |
| Num Word8 | Since: base-2.1 |
| Read Word8 | Since: base-2.1 |
| Integral Word8 | Since: base-2.1 |
| Real Word8 | Since: base-2.1 |
Defined in GHC.Word Methods toRational :: Word8 -> Rational # | |
| Show Word8 | Since: base-2.1 |
| PrintfArg Word8 | Since: base-2.1 |
Defined in Text.Printf | |
| NFData Word8 | |
Defined in Control.DeepSeq | |
| Eq Word8 | Since: base-2.1 |
| Ord Word8 | Since: base-2.1 |
Solo is the canonical lifted 1-tuple, just like (,) is the canonical
lifted 2-tuple (pair) and (,,) is the canonical lifted 3-tuple (triple).
The most important feature of Solo is that it is possible to force its
"outside" (usually by pattern matching) without forcing its "inside",
because it is defined as a datatype rather than a newtype. One situation
where this can be useful is when writing a function to extract a value from
a data structure. Suppose you write an implementation of arrays and offer
only this function to index into them:
index :: Array a -> Int -> a
Now imagine that someone wants to extract a value from an array and store it in a lazy-valued finite map/dictionary:
insert "hello" (arr index 12) m
This can actually lead to a space leak. The value is not actually extracted from the array until that value (now buried in a map) is forced. That means the entire array may be kept live by just that value! Often, the solution is to use a strict map, or to force the value before storing it, but for some purposes that's undesirable.
One common solution is to include an indexing function that can produce its
result in an arbitrary Applicative context:
indexA :: Applicative f => Array a -> Int -> f a
When using indexA in a pure context, Solo serves as a handy
Applicative functor to hold the result. You could write a non-leaky
version of the above example thus:
case arr indexA 12 of
Solo a -> insert "hello" a m
While such simple extraction functions are the most common uses for unary tuples, they can also be useful for fine-grained control of strict-spined data structure traversals, and for unifying the implementations of lazy and strict mapping functions.
Instances
| MonadFix Solo | Since: base-4.15 | ||||
Defined in Control.Monad.Fix | |||||
| MonadZip Solo | Since: base-4.15.0.0 | ||||
| Foldable Solo | Since: base-4.15 | ||||
Defined in Data.Foldable Methods fold :: Monoid m => Solo m -> m # foldMap :: Monoid m => (a -> m) -> Solo a -> m # foldMap' :: Monoid m => (a -> m) -> Solo a -> m # foldr :: (a -> b -> b) -> b -> Solo a -> b # foldr' :: (a -> b -> b) -> b -> Solo a -> b # foldl :: (b -> a -> b) -> b -> Solo a -> b # foldl' :: (b -> a -> b) -> b -> Solo a -> b # foldr1 :: (a -> a -> a) -> Solo a -> a # foldl1 :: (a -> a -> a) -> Solo a -> a # elem :: Eq a => a -> Solo a -> Bool # maximum :: Ord a => Solo a -> a # | |||||
| Foldable1 Solo | Since: base-4.18.0.0 | ||||
Defined in Data.Foldable1 Methods fold1 :: Semigroup m => Solo m -> m # foldMap1 :: Semigroup m => (a -> m) -> Solo a -> m # foldMap1' :: Semigroup m => (a -> m) -> Solo a -> m # toNonEmpty :: Solo a -> NonEmpty a # maximum :: Ord a => Solo a -> a # minimum :: Ord a => Solo a -> a # foldrMap1 :: (a -> b) -> (a -> b -> b) -> Solo a -> b # foldlMap1' :: (a -> b) -> (b -> a -> b) -> Solo a -> b # foldlMap1 :: (a -> b) -> (b -> a -> b) -> Solo a -> b # foldrMap1' :: (a -> b) -> (a -> b -> b) -> Solo a -> b # | |||||
| Eq1 Solo | Since: base-4.15 | ||||
| Ord1 Solo | Since: base-4.15 | ||||
Defined in Data.Functor.Classes | |||||
| Read1 Solo | Since: base-4.15 | ||||
Defined in Data.Functor.Classes | |||||
| Show1 Solo | Since: base-4.15 | ||||
| Traversable Solo | Since: base-4.15 | ||||
| Applicative Solo | Since: base-4.15 | ||||
| Functor Solo | Since: base-4.15 | ||||
| Monad Solo | Since: base-4.15 | ||||
| NFData1 Solo | Since: deepseq-1.4.6.0 | ||||
Defined in Control.DeepSeq | |||||
| Generic1 Solo | |||||
Defined in GHC.Generics Associated Types
| |||||
| Data a => Data (Solo a) | Since: base-4.15 | ||||
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Solo a -> c (Solo a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Solo a) # toConstr :: Solo a -> Constr # dataTypeOf :: Solo a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Solo a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Solo a)) # gmapT :: (forall b. Data b => b -> b) -> Solo a -> Solo a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Solo a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Solo a -> r # gmapQ :: (forall d. Data d => d -> u) -> Solo a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Solo a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Solo a -> m (Solo a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Solo a -> m (Solo a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Solo a -> m (Solo a) # | |||||
| Monoid a => Monoid (Solo a) | Since: base-4.15 | ||||
| Semigroup a => Semigroup (Solo a) | Since: base-4.15 | ||||
| Bounded a => Bounded (Solo a) | |||||
| Enum a => Enum (Solo a) | |||||
Defined in GHC.Enum | |||||
| Generic (Solo a) | |||||
Defined in GHC.Generics Associated Types
| |||||
| Ix a => Ix (Solo a) | |||||
| Read a => Read (Solo a) | Since: base-4.15 | ||||
| Show a => Show (Solo a) | Since: base-4.15 | ||||
| NFData a => NFData (Solo a) | Since: deepseq-1.4.6.0 | ||||
Defined in Control.DeepSeq | |||||
| Eq a => Eq (Solo a) | |||||
| Ord a => Ord (Solo a) | |||||
| type Rep1 Solo | Since: base-4.15 | ||||
Defined in GHC.Generics | |||||
| type Rep (Solo a) | Since: base-4.15 | ||||
Defined in GHC.Generics | |||||
Instances
| Data Word | Since: base-4.0.0.0 | ||||
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word -> c Word # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word # dataTypeOf :: Word -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Word) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word) # gmapT :: (forall b. Data b => b -> b) -> Word -> Word # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word -> r # gmapQ :: (forall d. Data d => d -> u) -> Word -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Word -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word -> m Word # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word -> m Word # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word -> m Word # | |||||
| Storable Word | Since: base-2.1 | ||||
Defined in Foreign.Storable | |||||
| Bits Word | Since: base-2.1 | ||||
Defined in GHC.Bits Methods (.&.) :: Word -> Word -> Word # (.|.) :: Word -> Word -> Word # complement :: Word -> Word # shift :: Word -> Int -> Word # rotate :: Word -> Int -> Word # setBit :: Word -> Int -> Word # clearBit :: Word -> Int -> Word # complementBit :: Word -> Int -> Word # testBit :: Word -> Int -> Bool # bitSizeMaybe :: Word -> Maybe Int # shiftL :: Word -> Int -> Word # unsafeShiftL :: Word -> Int -> Word # shiftR :: Word -> Int -> Word # unsafeShiftR :: Word -> Int -> Word # rotateL :: Word -> Int -> Word # | |||||
| FiniteBits Word | Since: base-4.6.0.0 | ||||
Defined in GHC.Bits Methods finiteBitSize :: Word -> Int # countLeadingZeros :: Word -> Int # countTrailingZeros :: Word -> Int # | |||||
| Bounded Word | Since: base-2.1 | ||||
| Enum Word | Since: base-2.1 | ||||
| Ix Word | Since: base-4.6.0.0 | ||||
| Num Word | Since: base-2.1 | ||||
| Read Word | Since: base-4.5.0.0 | ||||
| Integral Word | Since: base-2.1 | ||||
| Real Word | Since: base-2.1 | ||||
Defined in GHC.Real Methods toRational :: Word -> Rational # | |||||
| Show Word | Since: base-2.1 | ||||
| PrintfArg Word | Since: base-2.1 | ||||
Defined in Text.Printf | |||||
| NFData Word | |||||
Defined in Control.DeepSeq | |||||
| Eq Word | |||||
| Ord Word | |||||
| Generic1 (URec Word :: k -> Type) | |||||
Defined in GHC.Generics Associated Types
| |||||
| Foldable (UWord :: Type -> Type) | Since: base-4.9.0.0 | ||||
Defined in Data.Foldable Methods fold :: Monoid m => UWord m -> m # foldMap :: Monoid m => (a -> m) -> UWord a -> m # foldMap' :: Monoid m => (a -> m) -> UWord a -> m # foldr :: (a -> b -> b) -> b -> UWord a -> b # foldr' :: (a -> b -> b) -> b -> UWord a -> b # foldl :: (b -> a -> b) -> b -> UWord a -> b # foldl' :: (b -> a -> b) -> b -> UWord a -> b # foldr1 :: (a -> a -> a) -> UWord a -> a # foldl1 :: (a -> a -> a) -> UWord a -> a # elem :: Eq a => a -> UWord a -> Bool # maximum :: Ord a => UWord a -> a # minimum :: Ord a => UWord a -> a # | |||||
| Traversable (UWord :: Type -> Type) | Since: base-4.9.0.0 | ||||
| Functor (URec Word :: Type -> Type) | Since: base-4.9.0.0 | ||||
| Generic (URec Word p) | |||||
Defined in GHC.Generics Associated Types
| |||||
| Show (URec Word p) | Since: base-4.9.0.0 | ||||
| Eq (URec Word p) | Since: base-4.9.0.0 | ||||
| Ord (URec Word p) | Since: base-4.9.0.0 | ||||
Defined in GHC.Generics | |||||
| data URec Word (p :: k) | Used for marking occurrences of Since: base-4.9.0.0 | ||||
| type Rep1 (URec Word :: k -> Type) | Since: base-4.9.0.0 | ||||
Defined in GHC.Generics | |||||
| type Rep (URec Word p) | Since: base-4.9.0.0 | ||||
Defined in GHC.Generics | |||||
Instances
| Data Ordering | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Ordering -> c Ordering # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Ordering # toConstr :: Ordering -> Constr # dataTypeOf :: Ordering -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Ordering) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Ordering) # gmapT :: (forall b. Data b => b -> b) -> Ordering -> Ordering # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Ordering -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Ordering -> r # gmapQ :: (forall d. Data d => d -> u) -> Ordering -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Ordering -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Ordering -> m Ordering # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Ordering -> m Ordering # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Ordering -> m Ordering # | |
| Monoid Ordering | Since: base-2.1 |
| Semigroup Ordering | Since: base-4.9.0.0 |
| Bounded Ordering | Since: base-2.1 |
| Enum Ordering | Since: base-2.1 |
| Generic Ordering | |
Defined in GHC.Generics | |
| Ix Ordering | Since: base-2.1 |
Defined in GHC.Ix Methods range :: (Ordering, Ordering) -> [Ordering] # index :: (Ordering, Ordering) -> Ordering -> Int # unsafeIndex :: (Ordering, Ordering) -> Ordering -> Int # inRange :: (Ordering, Ordering) -> Ordering -> Bool # rangeSize :: (Ordering, Ordering) -> Int # unsafeRangeSize :: (Ordering, Ordering) -> Int # | |
| Read Ordering | Since: base-2.1 |
| Show Ordering | Since: base-2.1 |
| NFData Ordering | |
Defined in Control.DeepSeq | |
| Eq Ordering | |
| Ord Ordering | |
Defined in GHC.Classes | |
| type Rep Ordering | Since: base-4.6.0.0 |
64-bit unsigned integer type
Instances
| Data Word64 | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word64 -> c Word64 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word64 # toConstr :: Word64 -> Constr # dataTypeOf :: Word64 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Word64) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word64) # gmapT :: (forall b. Data b => b -> b) -> Word64 -> Word64 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word64 -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word64 -> r # gmapQ :: (forall d. Data d => d -> u) -> Word64 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Word64 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word64 -> m Word64 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word64 -> m Word64 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word64 -> m Word64 # | |
| Storable Word64 | Since: base-2.1 |
| Bits Word64 | Since: base-2.1 |
Defined in GHC.Word Methods (.&.) :: Word64 -> Word64 -> Word64 # (.|.) :: Word64 -> Word64 -> Word64 # xor :: Word64 -> Word64 -> Word64 # complement :: Word64 -> Word64 # shift :: Word64 -> Int -> Word64 # rotate :: Word64 -> Int -> Word64 # setBit :: Word64 -> Int -> Word64 # clearBit :: Word64 -> Int -> Word64 # complementBit :: Word64 -> Int -> Word64 # testBit :: Word64 -> Int -> Bool # bitSizeMaybe :: Word64 -> Maybe Int # shiftL :: Word64 -> Int -> Word64 # unsafeShiftL :: Word64 -> Int -> Word64 # shiftR :: Word64 -> Int -> Word64 # unsafeShiftR :: Word64 -> Int -> Word64 # rotateL :: Word64 -> Int -> Word64 # | |
| FiniteBits Word64 | Since: base-4.6.0.0 |
Defined in GHC.Word Methods finiteBitSize :: Word64 -> Int # countLeadingZeros :: Word64 -> Int # countTrailingZeros :: Word64 -> Int # | |
| Bounded Word64 | Since: base-2.1 |
| Enum Word64 | Since: base-2.1 |
Defined in GHC.Word | |
| Ix Word64 | Since: base-2.1 |
| Num Word64 | Since: base-2.1 |
| Read Word64 | Since: base-2.1 |
| Integral Word64 | Since: base-2.1 |
| Real Word64 | Since: base-2.1 |
Defined in GHC.Word Methods toRational :: Word64 -> Rational # | |
| Show Word64 | Since: base-2.1 |
| PrintfArg Word64 | Since: base-2.1 |
Defined in Text.Printf | |
| NFData Word64 | |
Defined in Control.DeepSeq | |
| Eq Word64 | Since: base-2.1 |
| Ord Word64 | Since: base-2.1 |
32-bit unsigned integer type
Instances
| Data Word32 | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word32 -> c Word32 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word32 # toConstr :: Word32 -> Constr # dataTypeOf :: Word32 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Word32) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word32) # gmapT :: (forall b. Data b => b -> b) -> Word32 -> Word32 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word32 -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word32 -> r # gmapQ :: (forall d. Data d => d -> u) -> Word32 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Word32 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word32 -> m Word32 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word32 -> m Word32 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word32 -> m Word32 # | |
| Storable Word32 | Since: base-2.1 |
| Bits Word32 | Since: base-2.1 |
Defined in GHC.Word Methods (.&.) :: Word32 -> Word32 -> Word32 # (.|.) :: Word32 -> Word32 -> Word32 # xor :: Word32 -> Word32 -> Word32 # complement :: Word32 -> Word32 # shift :: Word32 -> Int -> Word32 # rotate :: Word32 -> Int -> Word32 # setBit :: Word32 -> Int -> Word32 # clearBit :: Word32 -> Int -> Word32 # complementBit :: Word32 -> Int -> Word32 # testBit :: Word32 -> Int -> Bool # bitSizeMaybe :: Word32 -> Maybe Int # shiftL :: Word32 -> Int -> Word32 # unsafeShiftL :: Word32 -> Int -> Word32 # shiftR :: Word32 -> Int -> Word32 # unsafeShiftR :: Word32 -> Int -> Word32 # rotateL :: Word32 -> Int -> Word32 # | |
| FiniteBits Word32 | Since: base-4.6.0.0 |
Defined in GHC.Word Methods finiteBitSize :: Word32 -> Int # countLeadingZeros :: Word32 -> Int # countTrailingZeros :: Word32 -> Int # | |
| Bounded Word32 | Since: base-2.1 |
| Enum Word32 | Since: base-2.1 |
Defined in GHC.Word | |
| Ix Word32 | Since: base-2.1 |
| Num Word32 | Since: base-2.1 |
| Read Word32 | Since: base-2.1 |
| Integral Word32 | Since: base-2.1 |
| Real Word32 | Since: base-2.1 |
Defined in GHC.Word Methods toRational :: Word32 -> Rational # | |
| Show Word32 | Since: base-2.1 |
| PrintfArg Word32 | Since: base-2.1 |
Defined in Text.Printf | |
| NFData Word32 | |
Defined in Control.DeepSeq | |
| Eq Word32 | Since: base-2.1 |
| Ord Word32 | Since: base-2.1 |
16-bit unsigned integer type
Instances
| Data Word16 | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word16 -> c Word16 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word16 # toConstr :: Word16 -> Constr # dataTypeOf :: Word16 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Word16) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word16) # gmapT :: (forall b. Data b => b -> b) -> Word16 -> Word16 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word16 -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word16 -> r # gmapQ :: (forall d. Data d => d -> u) -> Word16 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Word16 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word16 -> m Word16 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word16 -> m Word16 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word16 -> m Word16 # | |
| Storable Word16 | Since: base-2.1 |
| Bits Word16 | Since: base-2.1 |
Defined in GHC.Word Methods (.&.) :: Word16 -> Word16 -> Word16 # (.|.) :: Word16 -> Word16 -> Word16 # xor :: Word16 -> Word16 -> Word16 # complement :: Word16 -> Word16 # shift :: Word16 -> Int -> Word16 # rotate :: Word16 -> Int -> Word16 # setBit :: Word16 -> Int -> Word16 # clearBit :: Word16 -> Int -> Word16 # complementBit :: Word16 -> Int -> Word16 # testBit :: Word16 -> Int -> Bool # bitSizeMaybe :: Word16 -> Maybe Int # shiftL :: Word16 -> Int -> Word16 # unsafeShiftL :: Word16 -> Int -> Word16 # shiftR :: Word16 -> Int -> Word16 # unsafeShiftR :: Word16 -> Int -> Word16 # rotateL :: Word16 -> Int -> Word16 # | |
| FiniteBits Word16 | Since: base-4.6.0.0 |
Defined in GHC.Word Methods finiteBitSize :: Word16 -> Int # countLeadingZeros :: Word16 -> Int # countTrailingZeros :: Word16 -> Int # | |
| Bounded Word16 | Since: base-2.1 |
| Enum Word16 | Since: base-2.1 |
Defined in GHC.Word | |
| Ix Word16 | Since: base-2.1 |
| Num Word16 | Since: base-2.1 |
| Read Word16 | Since: base-2.1 |
| Integral Word16 | Since: base-2.1 |
| Real Word16 | Since: base-2.1 |
Defined in GHC.Word Methods toRational :: Word16 -> Rational # | |
| Show Word16 | Since: base-2.1 |
| PrintfArg Word16 | Since: base-2.1 |
Defined in Text.Printf | |
| NFData Word16 | |
Defined in Control.DeepSeq | |
| Eq Word16 | Since: base-2.1 |
| Ord Word16 | Since: base-2.1 |
mapMaybe :: (a -> Maybe b) -> [a] -> [b] #
The mapMaybe function is a version of map which can throw
out elements. In particular, the functional argument returns
something of type . If this is Maybe bNothing, no element
is added on to the result list. If it is , then Just bb is
included in the result list.
Examples
Using is a shortcut for mapMaybe f x
in most cases:catMaybes $ map f x
>>>import Text.Read ( readMaybe )>>>let readMaybeInt = readMaybe :: String -> Maybe Int>>>mapMaybe readMaybeInt ["1", "Foo", "3"][1,3]>>>catMaybes $ map readMaybeInt ["1", "Foo", "3"][1,3]
If we map the Just constructor, the entire list should be returned:
>>>mapMaybe Just [1,2,3][1,2,3]
(<$>) :: Functor f => (a -> b) -> f a -> f b infixl 4 #
An infix synonym for fmap.
The name of this operator is an allusion to $.
Note the similarities between their types:
($) :: (a -> b) -> a -> b (<$>) :: Functor f => (a -> b) -> f a -> f b
Whereas $ is function application, <$> is function
application lifted over a Functor.
Examples
Convert from a to a Maybe Int using Maybe
Stringshow:
>>>show <$> NothingNothing>>>show <$> Just 3Just "3"
Convert from an to an
Either Int IntEither IntString using show:
>>>show <$> Left 17Left 17>>>show <$> Right 17Right "17"
Double each element of a list:
>>>(*2) <$> [1,2,3][2,4,6]
Apply even to the second element of a pair:
>>>even <$> (2,2)(2,True)
uncurry :: (a -> b -> c) -> (a, b) -> c #
uncurry converts a curried function to a function on pairs.
Examples
>>>uncurry (+) (1,2)3
>>>uncurry ($) (show, 1)"1"
>>>map (uncurry max) [(1,2), (3,4), (6,8)][2,4,8]
The value of is bottom if seq a ba is bottom, and
otherwise equal to b. In other words, it evaluates the first
argument a to weak head normal form (WHNF). seq is usually
introduced to improve performance by avoiding unneeded laziness.
A note on evaluation order: the expression does
not guarantee that seq a ba will be evaluated before b.
The only guarantee given by seq is that the both a
and b will be evaluated before seq returns a value.
In particular, this means that b may be evaluated before
a. If you need to guarantee a specific order of evaluation,
you must use the function pseq from the "parallel" package.
The Ord class is used for totally ordered datatypes.
Instances of Ord can be derived for any user-defined datatype whose
constituent types are in Ord. The declared order of the constructors in
the data declaration determines the ordering in derived Ord instances. The
Ordering datatype allows a single comparison to determine the precise
ordering of two objects.
Ord, as defined by the Haskell report, implements a total order and has the
following properties:
- Comparability
x <= y || y <= x=True- Transitivity
- if
x <= y && y <= z=True, thenx <= z=True - Reflexivity
x <= x=True- Antisymmetry
- if
x <= y && y <= x=True, thenx == y=True
The following operator interactions are expected to hold:
x >= y=y <= xx < y=x <= y && x /= yx > y=y < xx < y=compare x y == LTx > y=compare x y == GTx == y=compare x y == EQmin x y == if x <= y then x else y=Truemax x y == if x >= y then x else y=True
Note that (7.) and (8.) do not require min and max to return either of
their arguments. The result is merely required to equal one of the
arguments in terms of (==).
Minimal complete definition: either compare or <=.
Using compare can be more efficient for complex types.
Methods
compare :: a -> a -> Ordering #
(<) :: a -> a -> Bool infix 4 #
(<=) :: a -> a -> Bool infix 4 #
(>) :: a -> a -> Bool infix 4 #
Instances
| Ord ByteArray | Non-lexicographic ordering. This compares the lengths of the byte arrays first and uses a lexicographic ordering if the lengths are equal. Subject to change between major versions. Since: base-4.17.0.0 |
| Ord Unique | |
| Ord Version | Since: base-2.1 |
| Ord CBool | |
| Ord CChar | |
| Ord CClock | |
| Ord CDouble | |
| Ord CFloat | |
| Ord CInt | |
| Ord CIntMax | |
| Ord CIntPtr | |
| Ord CLLong | |
| Ord CLong | |
| Ord CPtrdiff | |
Defined in Foreign.C.Types | |
| Ord CSChar | |
| Ord CSUSeconds | |
Defined in Foreign.C.Types Methods compare :: CSUSeconds -> CSUSeconds -> Ordering # (<) :: CSUSeconds -> CSUSeconds -> Bool # (<=) :: CSUSeconds -> CSUSeconds -> Bool # (>) :: CSUSeconds -> CSUSeconds -> Bool # (>=) :: CSUSeconds -> CSUSeconds -> Bool # max :: CSUSeconds -> CSUSeconds -> CSUSeconds # min :: CSUSeconds -> CSUSeconds -> CSUSeconds # | |
| Ord CShort | |
| Ord CSigAtomic | |
Defined in Foreign.C.Types Methods compare :: CSigAtomic -> CSigAtomic -> Ordering # (<) :: CSigAtomic -> CSigAtomic -> Bool # (<=) :: CSigAtomic -> CSigAtomic -> Bool # (>) :: CSigAtomic -> CSigAtomic -> Bool # (>=) :: CSigAtomic -> CSigAtomic -> Bool # max :: CSigAtomic -> CSigAtomic -> CSigAtomic # min :: CSigAtomic -> CSigAtomic -> CSigAtomic # | |
| Ord CSize | |
| Ord CTime | |
| Ord CUChar | |
| Ord CUInt | |
| Ord CUIntMax | |
Defined in Foreign.C.Types | |
| Ord CUIntPtr | |
Defined in Foreign.C.Types | |
| Ord CULLong | |
| Ord CULong | |
| Ord CUSeconds | |
| Ord CUShort | |
| Ord CWchar | |
| Ord IntPtr | |
| Ord WordPtr | |
| Ord Void | Since: base-4.8.0.0 |
| Ord ByteOrder | Since: base-4.11.0.0 |
| Ord BlockReason | Since: base-4.3.0.0 |
Defined in GHC.Conc.Sync Methods compare :: BlockReason -> BlockReason -> Ordering # (<) :: BlockReason -> BlockReason -> Bool # (<=) :: BlockReason -> BlockReason -> Bool # (>) :: BlockReason -> BlockReason -> Bool # (>=) :: BlockReason -> BlockReason -> Bool # max :: BlockReason -> BlockReason -> BlockReason # min :: BlockReason -> BlockReason -> BlockReason # | |
| Ord ThreadId | Since: base-4.2.0.0 |
Defined in GHC.Conc.Sync | |
| Ord ThreadStatus | Since: base-4.3.0.0 |
Defined in GHC.Conc.Sync Methods compare :: ThreadStatus -> ThreadStatus -> Ordering # (<) :: ThreadStatus -> ThreadStatus -> Bool # (<=) :: ThreadStatus -> ThreadStatus -> Bool # (>) :: ThreadStatus -> ThreadStatus -> Bool # (>=) :: ThreadStatus -> ThreadStatus -> Bool # max :: ThreadStatus -> ThreadStatus -> ThreadStatus # min :: ThreadStatus -> ThreadStatus -> ThreadStatus # | |
| Ord TimeoutKey | |
Defined in GHC.Event.TimeOut Methods compare :: TimeoutKey -> TimeoutKey -> Ordering # (<) :: TimeoutKey -> TimeoutKey -> Bool # (<=) :: TimeoutKey -> TimeoutKey -> Bool # (>) :: TimeoutKey -> TimeoutKey -> Bool # (>=) :: TimeoutKey -> TimeoutKey -> Bool # max :: TimeoutKey -> TimeoutKey -> TimeoutKey # min :: TimeoutKey -> TimeoutKey -> TimeoutKey # | |
| Ord ErrorCall | Since: base-4.7.0.0 |
| Ord ArithException | Since: base-3.0 |
Defined in GHC.Exception.Type Methods compare :: ArithException -> ArithException -> Ordering # (<) :: ArithException -> ArithException -> Bool # (<=) :: ArithException -> ArithException -> Bool # (>) :: ArithException -> ArithException -> Bool # (>=) :: ArithException -> ArithException -> Bool # max :: ArithException -> ArithException -> ArithException # min :: ArithException -> ArithException -> ArithException # | |
| Ord Fingerprint | Since: base-4.4.0.0 |
Defined in GHC.Fingerprint.Type Methods compare :: Fingerprint -> Fingerprint -> Ordering # (<) :: Fingerprint -> Fingerprint -> Bool # (<=) :: Fingerprint -> Fingerprint -> Bool # (>) :: Fingerprint -> Fingerprint -> Bool # (>=) :: Fingerprint -> Fingerprint -> Bool # max :: Fingerprint -> Fingerprint -> Fingerprint # min :: Fingerprint -> Fingerprint -> Fingerprint # | |
| Ord Associativity | Since: base-4.6.0.0 |
Defined in GHC.Generics Methods compare :: Associativity -> Associativity -> Ordering # (<) :: Associativity -> Associativity -> Bool # (<=) :: Associativity -> Associativity -> Bool # (>) :: Associativity -> Associativity -> Bool # (>=) :: Associativity -> Associativity -> Bool # max :: Associativity -> Associativity -> Associativity # min :: Associativity -> Associativity -> Associativity # | |
| Ord DecidedStrictness | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods compare :: DecidedStrictness -> DecidedStrictness -> Ordering # (<) :: DecidedStrictness -> DecidedStrictness -> Bool # (<=) :: DecidedStrictness -> DecidedStrictness -> Bool # (>) :: DecidedStrictness -> DecidedStrictness -> Bool # (>=) :: DecidedStrictness -> DecidedStrictness -> Bool # max :: DecidedStrictness -> DecidedStrictness -> DecidedStrictness # min :: DecidedStrictness -> DecidedStrictness -> DecidedStrictness # | |
| Ord Fixity | Since: base-4.6.0.0 |
| Ord SourceStrictness | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods compare :: SourceStrictness -> SourceStrictness -> Ordering # (<) :: SourceStrictness -> SourceStrictness -> Bool # (<=) :: SourceStrictness -> SourceStrictness -> Bool # (>) :: SourceStrictness -> SourceStrictness -> Bool # (>=) :: SourceStrictness -> SourceStrictness -> Bool # max :: SourceStrictness -> SourceStrictness -> SourceStrictness # min :: SourceStrictness -> SourceStrictness -> SourceStrictness # | |
| Ord SourceUnpackedness | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods compare :: SourceUnpackedness -> SourceUnpackedness -> Ordering # (<) :: SourceUnpackedness -> SourceUnpackedness -> Bool # (<=) :: SourceUnpackedness -> SourceUnpackedness -> Bool # (>) :: SourceUnpackedness -> SourceUnpackedness -> Bool # (>=) :: SourceUnpackedness -> SourceUnpackedness -> Bool # max :: SourceUnpackedness -> SourceUnpackedness -> SourceUnpackedness # min :: SourceUnpackedness -> SourceUnpackedness -> SourceUnpackedness # | |
| Ord SeekMode | Since: base-4.2.0.0 |
Defined in GHC.IO.Device | |
| Ord ArrayException | Since: base-4.2.0.0 |
Defined in GHC.IO.Exception Methods compare :: ArrayException -> ArrayException -> Ordering # (<) :: ArrayException -> ArrayException -> Bool # (<=) :: ArrayException -> ArrayException -> Bool # (>) :: ArrayException -> ArrayException -> Bool # (>=) :: ArrayException -> ArrayException -> Bool # max :: ArrayException -> ArrayException -> ArrayException # min :: ArrayException -> ArrayException -> ArrayException # | |
| Ord AsyncException | Since: base-4.2.0.0 |
Defined in GHC.IO.Exception Methods compare :: AsyncException -> AsyncException -> Ordering # (<) :: AsyncException -> AsyncException -> Bool # (<=) :: AsyncException -> AsyncException -> Bool # (>) :: AsyncException -> AsyncException -> Bool # (>=) :: AsyncException -> AsyncException -> Bool # max :: AsyncException -> AsyncException -> AsyncException # min :: AsyncException -> AsyncException -> AsyncException # | |
| Ord ExitCode | |
Defined in GHC.IO.Exception | |
| Ord BufferMode | Since: base-4.2.0.0 |
Defined in GHC.IO.Handle.Types Methods compare :: BufferMode -> BufferMode -> Ordering # (<) :: BufferMode -> BufferMode -> Bool # (<=) :: BufferMode -> BufferMode -> Bool # (>) :: BufferMode -> BufferMode -> Bool # (>=) :: BufferMode -> BufferMode -> Bool # max :: BufferMode -> BufferMode -> BufferMode # min :: BufferMode -> BufferMode -> BufferMode # | |
| Ord Newline | Since: base-4.3.0.0 |
| Ord NewlineMode | Since: base-4.3.0.0 |
Defined in GHC.IO.Handle.Types Methods compare :: NewlineMode -> NewlineMode -> Ordering # (<) :: NewlineMode -> NewlineMode -> Bool # (<=) :: NewlineMode -> NewlineMode -> Bool # (>) :: NewlineMode -> NewlineMode -> Bool # (>=) :: NewlineMode -> NewlineMode -> Bool # max :: NewlineMode -> NewlineMode -> NewlineMode # min :: NewlineMode -> NewlineMode -> NewlineMode # | |
| Ord IOMode | Since: base-4.2.0.0 |
| Ord Int16 | Since: base-2.1 |
| Ord Int32 | Since: base-2.1 |
| Ord Int64 | Since: base-2.1 |
| Ord Int8 | Since: base-2.1 |
| Ord SomeChar | |
Defined in GHC.TypeLits | |
| Ord SomeSymbol | Since: base-4.7.0.0 |
Defined in GHC.TypeLits Methods compare :: SomeSymbol -> SomeSymbol -> Ordering # (<) :: SomeSymbol -> SomeSymbol -> Bool # (<=) :: SomeSymbol -> SomeSymbol -> Bool # (>) :: SomeSymbol -> SomeSymbol -> Bool # (>=) :: SomeSymbol -> SomeSymbol -> Bool # max :: SomeSymbol -> SomeSymbol -> SomeSymbol # min :: SomeSymbol -> SomeSymbol -> SomeSymbol # | |
| Ord SomeNat | Since: base-4.7.0.0 |
| Ord GeneralCategory | Since: base-2.1 |
Defined in GHC.Unicode Methods compare :: GeneralCategory -> GeneralCategory -> Ordering # (<) :: GeneralCategory -> GeneralCategory -> Bool # (<=) :: GeneralCategory -> GeneralCategory -> Bool # (>) :: GeneralCategory -> GeneralCategory -> Bool # (>=) :: GeneralCategory -> GeneralCategory -> Bool # max :: GeneralCategory -> GeneralCategory -> GeneralCategory # min :: GeneralCategory -> GeneralCategory -> GeneralCategory # | |
| Ord Word16 | Since: base-2.1 |
| Ord Word32 | Since: base-2.1 |
| Ord Word64 | Since: base-2.1 |
| Ord Word8 | Since: base-2.1 |
| Ord CBlkCnt | |
| Ord CBlkSize | |
Defined in System.Posix.Types | |
| Ord CCc | |
| Ord CClockId | |
Defined in System.Posix.Types | |
| Ord CDev | |
| Ord CFsBlkCnt | |
| Ord CFsFilCnt | |
| Ord CGid | |
| Ord CId | |
| Ord CIno | |
| Ord CKey | |
| Ord CMode | |
| Ord CNfds | |
| Ord CNlink | |
| Ord COff | |
| Ord CPid | |
| Ord CRLim | |
| Ord CSocklen | |
Defined in System.Posix.Types | |
| Ord CSpeed | |
| Ord CSsize | |
| Ord CTcflag | |
| Ord CTimer | |
| Ord CUid | |
| Ord Fd | |
| Ord ByteString | |
Defined in Data.ByteString.Internal.Type Methods compare :: ByteString -> ByteString -> Ordering # (<) :: ByteString -> ByteString -> Bool # (<=) :: ByteString -> ByteString -> Bool # (>) :: ByteString -> ByteString -> Bool # (>=) :: ByteString -> ByteString -> Bool # max :: ByteString -> ByteString -> ByteString # min :: ByteString -> ByteString -> ByteString # | |
| Ord ByteString | |
Defined in Data.ByteString.Lazy.Internal Methods compare :: ByteString -> ByteString -> Ordering # (<) :: ByteString -> ByteString -> Bool # (<=) :: ByteString -> ByteString -> Bool # (>) :: ByteString -> ByteString -> Bool # (>=) :: ByteString -> ByteString -> Bool # max :: ByteString -> ByteString -> ByteString # min :: ByteString -> ByteString -> ByteString # | |
| Ord ShortByteString | Lexicographic order. |
Defined in Data.ByteString.Short.Internal Methods compare :: ShortByteString -> ShortByteString -> Ordering # (<) :: ShortByteString -> ShortByteString -> Bool # (<=) :: ShortByteString -> ShortByteString -> Bool # (>) :: ShortByteString -> ShortByteString -> Bool # (>=) :: ShortByteString -> ShortByteString -> Bool # max :: ShortByteString -> ShortByteString -> ShortByteString # min :: ShortByteString -> ShortByteString -> ShortByteString # | |
| Ord BigNat | |
| Ord Ordering | |
Defined in GHC.Classes | |
| Ord TyCon | |
| Ord I8 | |
| Ord Builder | |
Defined in Data.Text.Internal.Builder | |
| Ord Integer | |
| Ord Natural | |
| Ord () | |
| Ord Bool | |
| Ord Char | |
| Ord Double | IEEE 754 IEEE 754-2008, section 5.11 requires that if at least one of arguments of
IEEE 754-2008, section 5.10 defines Thus, users must be extremely cautious when using Moving further, the behaviour of IEEE 754-2008 compliant |
| Ord Float | See |
| Ord Int | |
| Ord Word | |
| Ord a => Ord (ZipList a) | Since: base-4.7.0.0 |
| Ord a => Ord (Identity a) | Since: base-4.8.0.0 |
Defined in Data.Functor.Identity | |
| Ord a => Ord (First a) | Since: base-2.1 |
| Ord a => Ord (Last a) | Since: base-2.1 |
| Ord a => Ord (Down a) | Since: base-4.6.0.0 |
| Ord a => Ord (First a) | Since: base-4.9.0.0 |
| Ord a => Ord (Last a) | Since: base-4.9.0.0 |
| Ord a => Ord (Max a) | Since: base-4.9.0.0 |
| Ord a => Ord (Min a) | Since: base-4.9.0.0 |
| Ord m => Ord (WrappedMonoid m) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods compare :: WrappedMonoid m -> WrappedMonoid m -> Ordering # (<) :: WrappedMonoid m -> WrappedMonoid m -> Bool # (<=) :: WrappedMonoid m -> WrappedMonoid m -> Bool # (>) :: WrappedMonoid m -> WrappedMonoid m -> Bool # (>=) :: WrappedMonoid m -> WrappedMonoid m -> Bool # max :: WrappedMonoid m -> WrappedMonoid m -> WrappedMonoid m # min :: WrappedMonoid m -> WrappedMonoid m -> WrappedMonoid m # | |
| Ord (ConstPtr a) | |
| Ord a => Ord (NonEmpty a) | Since: base-4.9.0.0 |
| Ord (ForeignPtr a) | Since: base-2.1 |
Defined in GHC.ForeignPtr Methods compare :: ForeignPtr a -> ForeignPtr a -> Ordering # (<) :: ForeignPtr a -> ForeignPtr a -> Bool # (<=) :: ForeignPtr a -> ForeignPtr a -> Bool # (>) :: ForeignPtr a -> ForeignPtr a -> Bool # (>=) :: ForeignPtr a -> ForeignPtr a -> Bool # max :: ForeignPtr a -> ForeignPtr a -> ForeignPtr a # min :: ForeignPtr a -> ForeignPtr a -> ForeignPtr a # | |
| Ord p => Ord (Par1 p) | Since: base-4.7.0.0 |
| Ord (FunPtr a) | |
Defined in GHC.Ptr | |
| Ord (Ptr a) | Since: base-2.1 |
| Integral a => Ord (Ratio a) | Since: base-2.0.1 |
| Ord (SChar c) | Since: base-4.19.0.0 |
| Ord (SSymbol s) | Since: base-4.19.0.0 |
| Ord (SNat n) | Since: base-4.19.0.0 |
| Ord a => Ord (Stream a) | |
Defined in Data.Text.Internal.Fusion.Types | |
| Ord a => Ord (Maybe a) | Since: base-2.1 |
| Ord a => Ord (Solo a) | |
| Ord a => Ord [a] | |
| (Ord a, Ord b) => Ord (Either a b) | Since: base-2.1 |
| Ord (Fixed a) | Since: base-2.1 |
| Ord (Proxy s) | Since: base-4.7.0.0 |
| Ord a => Ord (Arg a b) | Since: base-4.9.0.0 |
| (Ix i, Ord e) => Ord (Array i e) | Since: base-2.1 |
| Ord (U1 p) | Since: base-4.7.0.0 |
| Ord (V1 p) | Since: base-4.9.0.0 |
| (Ord a, Ord b) => Ord (a, b) | |
| Ord a => Ord (Const a b) | Since: base-4.9.0.0 |
| Ord (f a) => Ord (Ap f a) | Since: base-4.12.0.0 |
| Ord (Coercion a b) | Since: base-4.7.0.0 |
Defined in Data.Type.Coercion | |
| Ord (a :~: b) | Since: base-4.7.0.0 |
Defined in Data.Type.Equality | |
| (Generic1 f, Ord (Rep1 f a)) => Ord (Generically1 f a) | Since: base-4.18.0.0 |
Defined in GHC.Generics Methods compare :: Generically1 f a -> Generically1 f a -> Ordering # (<) :: Generically1 f a -> Generically1 f a -> Bool # (<=) :: Generically1 f a -> Generically1 f a -> Bool # (>) :: Generically1 f a -> Generically1 f a -> Bool # (>=) :: Generically1 f a -> Generically1 f a -> Bool # max :: Generically1 f a -> Generically1 f a -> Generically1 f a # min :: Generically1 f a -> Generically1 f a -> Generically1 f a # | |
| Ord (f p) => Ord (Rec1 f p) | Since: base-4.7.0.0 |
Defined in GHC.Generics | |
| Ord (URec (Ptr ()) p) | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods compare :: URec (Ptr ()) p -> URec (Ptr ()) p -> Ordering # (<) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool # (<=) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool # (>) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool # (>=) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool # max :: URec (Ptr ()) p -> URec (Ptr ()) p -> URec (Ptr ()) p # min :: URec (Ptr ()) p -> URec (Ptr ()) p -> URec (Ptr ()) p # | |
| Ord (URec Char p) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| Ord (URec Double p) | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods compare :: URec Double p -> URec Double p -> Ordering # (<) :: URec Double p -> URec Double p -> Bool # (<=) :: URec Double p -> URec Double p -> Bool # (>) :: URec Double p -> URec Double p -> Bool # (>=) :: URec Double p -> URec Double p -> Bool # | |
| Ord (URec Float p) | |
Defined in GHC.Generics | |
| Ord (URec Int p) | Since: base-4.9.0.0 |
| Ord (URec Word p) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| (Ord a, Ord b, Ord c) => Ord (a, b, c) | |
| (Ord (f a), Ord (g a)) => Ord (Product f g a) | Since: base-4.18.0.0 |
Defined in Data.Functor.Product Methods compare :: Product f g a -> Product f g a -> Ordering # (<) :: Product f g a -> Product f g a -> Bool # (<=) :: Product f g a -> Product f g a -> Bool # (>) :: Product f g a -> Product f g a -> Bool # (>=) :: Product f g a -> Product f g a -> Bool # | |
| (Ord (f a), Ord (g a)) => Ord (Sum f g a) | Since: base-4.18.0.0 |
| Ord (a :~~: b) | Since: base-4.10.0.0 |
| (Ord (f p), Ord (g p)) => Ord ((f :*: g) p) | Since: base-4.7.0.0 |
Defined in GHC.Generics | |
| (Ord (f p), Ord (g p)) => Ord ((f :+: g) p) | Since: base-4.7.0.0 |
Defined in GHC.Generics | |
| Ord c => Ord (K1 i c p) | Since: base-4.7.0.0 |
Defined in GHC.Generics | |
| (Ord a, Ord b, Ord c, Ord d) => Ord (a, b, c, d) | |
Defined in GHC.Classes | |
| Ord (f (g a)) => Ord (Compose f g a) | Since: base-4.18.0.0 |
Defined in Data.Functor.Compose Methods compare :: Compose f g a -> Compose f g a -> Ordering # (<) :: Compose f g a -> Compose f g a -> Bool # (<=) :: Compose f g a -> Compose f g a -> Bool # (>) :: Compose f g a -> Compose f g a -> Bool # (>=) :: Compose f g a -> Compose f g a -> Bool # | |
| Ord (f (g p)) => Ord ((f :.: g) p) | Since: base-4.7.0.0 |
Defined in GHC.Generics | |
| Ord (f p) => Ord (M1 i c f p) | Since: base-4.7.0.0 |
| (Ord a, Ord b, Ord c, Ord d, Ord e) => Ord (a, b, c, d, e) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e) -> (a, b, c, d, e) -> Ordering # (<) :: (a, b, c, d, e) -> (a, b, c, d, e) -> Bool # (<=) :: (a, b, c, d, e) -> (a, b, c, d, e) -> Bool # (>) :: (a, b, c, d, e) -> (a, b, c, d, e) -> Bool # (>=) :: (a, b, c, d, e) -> (a, b, c, d, e) -> Bool # max :: (a, b, c, d, e) -> (a, b, c, d, e) -> (a, b, c, d, e) # min :: (a, b, c, d, e) -> (a, b, c, d, e) -> (a, b, c, d, e) # | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f) => Ord (a, b, c, d, e, f) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Ordering # (<) :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Bool # (<=) :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Bool # (>) :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Bool # (>=) :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Bool # max :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> (a, b, c, d, e, f) # min :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> (a, b, c, d, e, f) # | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g) => Ord (a, b, c, d, e, f, g) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Ordering # (<) :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Bool # (<=) :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Bool # (>) :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Bool # (>=) :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Bool # max :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) # min :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) # | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h) => Ord (a, b, c, d, e, f, g, h) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Ordering # (<) :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Bool # (<=) :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Bool # (>) :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Bool # (>=) :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Bool # max :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) # min :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) # | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i) => Ord (a, b, c, d, e, f, g, h, i) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Bool # max :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) # min :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) # | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j) => Ord (a, b, c, d, e, f, g, h, i, j) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Bool # max :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) # min :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) # | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k) => Ord (a, b, c, d, e, f, g, h, i, j, k) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Bool # max :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) # min :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) # | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l) => Ord (a, b, c, d, e, f, g, h, i, j, k, l) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Bool # max :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) # min :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) # | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l, Ord m) => Ord (a, b, c, d, e, f, g, h, i, j, k, l, m) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Bool # max :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) # min :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) # | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l, Ord m, Ord n) => Ord (a, b, c, d, e, f, g, h, i, j, k, l, m, n) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Bool # max :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) # min :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) # | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l, Ord m, Ord n, Ord o) => Ord (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Bool # max :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) # min :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) # | |
class Functor (f :: Type -> Type) where #
A type f is a Functor if it provides a function fmap which, given any types a and b
lets you apply any function from (a -> b) to turn an f a into an f b, preserving the
structure of f. Furthermore f needs to adhere to the following:
Note, that the second law follows from the free theorem of the type fmap and
the first law, so you need only check that the former condition holds.
See https://www.schoolofhaskell.com/user/edwardk/snippets/fmap or
https://github.com/quchen/articles/blob/master/second_functor_law.md
for an explanation.
Minimal complete definition
Methods
fmap :: (a -> b) -> f a -> f b #
fmap is used to apply a function of type (a -> b) to a value of type f a,
where f is a functor, to produce a value of type f b.
Note that for any type constructor with more than one parameter (e.g., Either),
only the last type parameter can be modified with fmap (e.g., b in `Either a b`).
Some type constructors with two parameters or more have a instance that allows
both the last and the penultimate parameters to be mapped over.Bifunctor
Examples
Convert from a to a Maybe IntMaybe String
using show:
>>>fmap show NothingNothing>>>fmap show (Just 3)Just "3"
Convert from an to an
Either Int IntEither Int String using show:
>>>fmap show (Left 17)Left 17>>>fmap show (Right 17)Right "17"
Double each element of a list:
>>>fmap (*2) [1,2,3][2,4,6]
Apply even to the second element of a pair:
>>>fmap even (2,2)(2,True)
It may seem surprising that the function is only applied to the last element of the tuple
compared to the list example above which applies it to every element in the list.
To understand, remember that tuples are type constructors with multiple type parameters:
a tuple of 3 elements (a,b,c) can also be written (,,) a b c and its Functor instance
is defined for Functor ((,,) a b) (i.e., only the third parameter is free to be mapped over
with fmap).
It explains why fmap can be used with tuples containing values of different types as in the
following example:
>>>fmap even ("hello", 1.0, 4)("hello",1.0,True)
Instances
| Functor ZipList | Since: base-2.1 |
| Functor Handler | Since: base-4.6.0.0 |
| Functor Complex | Since: base-4.9.0.0 |
| Functor Identity | Since: base-4.8.0.0 |
| Functor First | Since: base-4.8.0.0 |
| Functor Last | Since: base-4.8.0.0 |
| Functor Down | Since: base-4.11.0.0 |
| Functor First | Since: base-4.9.0.0 |
| Functor Last | Since: base-4.9.0.0 |
| Functor Max | Since: base-4.9.0.0 |
| Functor Min | Since: base-4.9.0.0 |
| Functor NonEmpty | Since: base-4.9.0.0 |
| Functor STM | Since: base-4.3.0.0 |
| Functor NoIO | Since: base-4.8.0.0 |
| Functor Par1 | Since: base-4.9.0.0 |
| Functor ArgDescr | Since: base-4.7.0.0 |
| Functor ArgOrder | Since: base-4.7.0.0 |
| Functor OptDescr | Since: base-4.7.0.0 |
| Functor P | Since: base-4.8.0.0 |
Defined in Text.ParserCombinators.ReadP | |
| Functor ReadP | Since: base-2.1 |
| Functor ReadPrec | Since: base-2.1 |
| Functor Put | |
| Functor IO | Since: base-2.1 |
| Functor Maybe | Since: base-2.1 |
| Functor Solo | Since: base-4.15 |
| Functor [] | Since: base-2.1 |
| Monad m => Functor (WrappedMonad m) | Since: base-2.1 |
Defined in Control.Applicative Methods fmap :: (a -> b) -> WrappedMonad m a -> WrappedMonad m b # (<$) :: a -> WrappedMonad m b -> WrappedMonad m a # | |
| Arrow a => Functor (ArrowMonad a) | Since: base-4.6.0.0 |
Defined in Control.Arrow Methods fmap :: (a0 -> b) -> ArrowMonad a a0 -> ArrowMonad a b # (<$) :: a0 -> ArrowMonad a b -> ArrowMonad a a0 # | |
| Functor (Either a) | Since: base-3.0 |
| Functor (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
| Functor (Arg a) | Since: base-4.9.0.0 |
| Functor (Array i) | Since: base-2.1 |
| Functor (U1 :: Type -> Type) | Since: base-4.9.0.0 |
| Functor (V1 :: Type -> Type) | Since: base-4.9.0.0 |
| Functor (ST s) | Since: base-2.1 |
| Functor (IParser t) | |
| Functor ((,) a) | Since: base-2.1 |
| Arrow a => Functor (WrappedArrow a b) | Since: base-2.1 |
Defined in Control.Applicative Methods fmap :: (a0 -> b0) -> WrappedArrow a b a0 -> WrappedArrow a b b0 # (<$) :: a0 -> WrappedArrow a b b0 -> WrappedArrow a b a0 # | |
| Functor m => Functor (Kleisli m a) | Since: base-4.14.0.0 |
| Functor (Const m :: Type -> Type) | Since: base-2.1 |
| Functor f => Functor (Ap f) | Since: base-4.12.0.0 |
| (Generic1 f, Functor (Rep1 f)) => Functor (Generically1 f) | Since: base-4.17.0.0 |
Defined in GHC.Generics Methods fmap :: (a -> b) -> Generically1 f a -> Generically1 f b # (<$) :: a -> Generically1 f b -> Generically1 f a # | |
| Functor f => Functor (Rec1 f) | Since: base-4.9.0.0 |
| Functor (URec (Ptr ()) :: Type -> Type) | Since: base-4.9.0.0 |
| Functor (URec Char :: Type -> Type) | Since: base-4.9.0.0 |
| Functor (URec Double :: Type -> Type) | Since: base-4.9.0.0 |
| Functor (URec Float :: Type -> Type) | Since: base-4.9.0.0 |
| Functor (URec Int :: Type -> Type) | Since: base-4.9.0.0 |
| Functor (URec Word :: Type -> Type) | Since: base-4.9.0.0 |
| Functor ((,,) a b) | Since: base-4.14.0.0 |
| (Functor f, Functor g) => Functor (Product f g) | Since: base-4.9.0.0 |
| (Functor f, Functor g) => Functor (Sum f g) | Since: base-4.9.0.0 |
| (Functor f, Functor g) => Functor (f :*: g) | Since: base-4.9.0.0 |
| (Functor f, Functor g) => Functor (f :+: g) | Since: base-4.9.0.0 |
| Functor (K1 i c :: Type -> Type) | Since: base-4.9.0.0 |
| Functor ((,,,) a b c) | Since: base-4.14.0.0 |
| Functor ((->) r) | Since: base-2.1 |
| (Functor f, Functor g) => Functor (Compose f g) | Since: base-4.9.0.0 |
| (Functor f, Functor g) => Functor (f :.: g) | Since: base-4.9.0.0 |
| Functor f => Functor (M1 i c f) | Since: base-4.9.0.0 |
| Functor ((,,,,) a b c d) | Since: base-4.18.0.0 |
| Functor ((,,,,,) a b c d e) | Since: base-4.18.0.0 |
| Functor ((,,,,,,) a b c d e f) | Since: base-4.18.0.0 |
(<>) :: Semigroup a => a -> a -> a infixr 6 #
An associative operation.
Examples
>>>[1,2,3] <> [4,5,6][1,2,3,4,5,6]
>>>Just [1, 2, 3] <> Just [4, 5, 6]Just [1,2,3,4,5,6]
>>>putStr "Hello, " <> putStrLn "World!"Hello, World!
The Bounded class is used to name the upper and lower limits of a
type. Ord is not a superclass of Bounded since types that are not
totally ordered may also have upper and lower bounds.
The Bounded class may be derived for any enumeration type;
minBound is the first constructor listed in the data declaration
and maxBound is the last.
Bounded may also be derived for single-constructor datatypes whose
constituent types are in Bounded.
Instances
| Bounded CBool | |
| Bounded CChar | |
| Bounded CInt | |
| Bounded CIntMax | |
| Bounded CIntPtr | |
| Bounded CLLong | |
| Bounded CLong | |
| Bounded CPtrdiff | |
| Bounded CSChar | |
| Bounded CShort | |
| Bounded CSigAtomic | |
Defined in Foreign.C.Types | |
| Bounded CSize | |
| Bounded CUChar | |
| Bounded CUInt | |
| Bounded CUIntMax | |
| Bounded CUIntPtr | |
| Bounded CULLong | |
| Bounded CULong | |
| Bounded CUShort | |
| Bounded CWchar | |
| Bounded IntPtr | |
| Bounded WordPtr | |
| Bounded ByteOrder | Since: base-4.11.0.0 |
| Bounded Associativity | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| Bounded DecidedStrictness | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| Bounded SourceStrictness | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| Bounded SourceUnpackedness | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| Bounded Int16 | Since: base-2.1 |
| Bounded Int32 | Since: base-2.1 |
| Bounded Int64 | Since: base-2.1 |
| Bounded Int8 | Since: base-2.1 |
| Bounded GeneralCategory | Since: base-2.1 |
Defined in GHC.Unicode | |
| Bounded Word16 | Since: base-2.1 |
| Bounded Word32 | Since: base-2.1 |
| Bounded Word64 | Since: base-2.1 |
| Bounded Word8 | Since: base-2.1 |
| Bounded CBlkCnt | |
| Bounded CBlkSize | |
| Bounded CClockId | |
| Bounded CDev | |
| Bounded CFsBlkCnt | |
| Bounded CFsFilCnt | |
| Bounded CGid | |
| Bounded CId | |
| Bounded CIno | |
| Bounded CKey | |
| Bounded CMode | |
| Bounded CNfds | |
| Bounded CNlink | |
| Bounded COff | |
| Bounded CPid | |
| Bounded CRLim | |
| Bounded CSocklen | |
| Bounded CSsize | |
| Bounded CTcflag | |
| Bounded CUid | |
| Bounded Fd | |
| Bounded Ordering | Since: base-2.1 |
| Bounded I8 | |
| Bounded FPFormat | |
| Bounded () | Since: base-2.1 |
| Bounded Bool | Since: base-2.1 |
| Bounded Char | Since: base-2.1 |
| Bounded Int | Since: base-2.1 |
| Bounded Levity | Since: base-4.16.0.0 |
| Bounded VecCount | Since: base-4.10.0.0 |
| Bounded VecElem | Since: base-4.10.0.0 |
| Bounded Word | Since: base-2.1 |
| Bounded a => Bounded (And a) | Since: base-4.16 |
| Bounded a => Bounded (Iff a) | Since: base-4.16 |
| Bounded a => Bounded (Ior a) | Since: base-4.16 |
| Bounded a => Bounded (Xor a) | Since: base-4.16 |
| Bounded a => Bounded (Identity a) | Since: base-4.9.0.0 |
| Bounded a => Bounded (Down a) | Swaps Since: base-4.14.0.0 |
| Bounded a => Bounded (First a) | Since: base-4.9.0.0 |
| Bounded a => Bounded (Last a) | Since: base-4.9.0.0 |
| Bounded a => Bounded (Max a) | Since: base-4.9.0.0 |
| Bounded a => Bounded (Min a) | Since: base-4.9.0.0 |
| Bounded m => Bounded (WrappedMonoid m) | Since: base-4.9.0.0 |
Defined in Data.Semigroup | |
| Bounded a => Bounded (Solo a) | |
| Bounded (Proxy t) | Since: base-4.7.0.0 |
| (Bounded a, Bounded b) => Bounded (a, b) | Since: base-2.1 |
| Bounded a => Bounded (Const a b) | Since: base-4.9.0.0 |
| (Applicative f, Bounded a) => Bounded (Ap f a) | Since: base-4.12.0.0 |
| Coercible a b => Bounded (Coercion a b) | Since: base-4.7.0.0 |
| a ~ b => Bounded (a :~: b) | Since: base-4.7.0.0 |
| (Bounded a, Bounded b, Bounded c) => Bounded (a, b, c) | Since: base-2.1 |
| a ~~ b => Bounded (a :~~: b) | Since: base-4.10.0.0 |
| (Bounded a, Bounded b, Bounded c, Bounded d) => Bounded (a, b, c, d) | Since: base-2.1 |
| Bounded (f (g a)) => Bounded (Compose f g a) | Since: base-4.19.0.0 |
| (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e) => Bounded (a, b, c, d, e) | Since: base-2.1 |
| (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f) => Bounded (a, b, c, d, e, f) | Since: base-2.1 |
| (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g) => Bounded (a, b, c, d, e, f, g) | Since: base-2.1 |
| (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h) => Bounded (a, b, c, d, e, f, g, h) | Since: base-2.1 |
| (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i) => Bounded (a, b, c, d, e, f, g, h, i) | Since: base-2.1 |
| (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j) => Bounded (a, b, c, d, e, f, g, h, i, j) | Since: base-2.1 |
| (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k) => Bounded (a, b, c, d, e, f, g, h, i, j, k) | Since: base-2.1 |
| (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l) | Since: base-2.1 |
| (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l, Bounded m) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l, m) | Since: base-2.1 |
| (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l, Bounded m, Bounded n) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l, m, n) | Since: base-2.1 |
| (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l, Bounded m, Bounded n, Bounded o) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) | Since: base-2.1 |
Class Enum defines operations on sequentially ordered types.
The enumFrom... methods are used in Haskell's translation of
arithmetic sequences.
Instances of Enum may be derived for any enumeration type (types
whose constructors have no fields). The nullary constructors are
assumed to be numbered left-to-right by fromEnum from 0 through n-1.
See Chapter 10 of the Haskell Report for more details.
For any type that is an instance of class Bounded as well as Enum,
the following should hold:
- The calls
andsuccmaxBoundshould result in a runtime error.predminBound fromEnumandtoEnumshould give a runtime error if the result value is not representable in the result type. For example,is an error.toEnum7 ::BoolenumFromandenumFromThenshould be defined with an implicit bound, thus:
enumFrom x = enumFromTo x maxBound
enumFromThen x y = enumFromThenTo x y bound
where
bound | fromEnum y >= fromEnum x = maxBound
| otherwise = minBoundInstances
A space efficient, packed, unboxed Unicode text type.
Extract the value from a Solo. Very often, values should be extracted
directly using pattern matching, to control just what gets evaluated when.
getSolo is for convenience in situations where that is not the case:
When the result is passed to a strict function, it makes no difference whether the pattern matching is done on the "outside" or on the "inside":
Data.Set.insert (getSolo sol) set === case sol of Solo v -> Data.Set.insert v set
A traversal may be performed in Solo in order to control evaluation
internally, while using getSolo to extract the final result. A strict
mapping function, for example, could be defined
map' :: Traversable t => (a -> b) -> t a -> t b map' f = getSolo . traverse ((Solo $!) . f)
($!) :: (a -> b) -> a -> b infixr 0 #
Strict (call-by-value) application operator. It takes a function and an argument, evaluates the argument to weak head normal form (WHNF), then calls the function with that value.
maybe :: b -> (a -> b) -> Maybe a -> b #
The maybe function takes a default value, a function, and a Maybe
value. If the Maybe value is Nothing, the function returns the
default value. Otherwise, it applies the function to the value inside
the Just and returns the result.
Examples
Basic usage:
>>>maybe False odd (Just 3)True
>>>maybe False odd NothingFalse
Read an integer from a string using readMaybe. If we succeed,
return twice the integer; that is, apply (*2) to it. If instead
we fail to parse an integer, return 0 by default:
>>>import Text.Read ( readMaybe )>>>maybe 0 (*2) (readMaybe "5")10>>>maybe 0 (*2) (readMaybe "")0
Apply show to a Maybe Int. If we have Just n, we want to show
the underlying Int n. But if we have Nothing, we return the
empty string instead of (for example) "Nothing":
>>>maybe "" show (Just 5)"5">>>maybe "" show Nothing""
fromMaybe :: a -> Maybe a -> a #
The fromMaybe function takes a default value and a Maybe
value. If the Maybe is Nothing, it returns the default value;
otherwise, it returns the value contained in the Maybe.
Examples
Basic usage:
>>>fromMaybe "" (Just "Hello, World!")"Hello, World!"
>>>fromMaybe "" Nothing""
Read an integer from a string using readMaybe. If we fail to
parse an integer, we want to return 0 by default:
>>>import Text.Read ( readMaybe )>>>fromMaybe 0 (readMaybe "5")5>>>fromMaybe 0 (readMaybe "")0
maybeToList :: Maybe a -> [a] #
The maybeToList function returns an empty list when given
Nothing or a singleton list when given Just.
Examples
Basic usage:
>>>maybeToList (Just 7)[7]
>>>maybeToList Nothing[]
One can use maybeToList to avoid pattern matching when combined
with a function that (safely) works on lists:
>>>import Text.Read ( readMaybe )>>>sum $ maybeToList (readMaybe "3")3>>>sum $ maybeToList (readMaybe "")0
listToMaybe :: [a] -> Maybe a #
The listToMaybe function returns Nothing on an empty list
or where Just aa is the first element of the list.
Examples
Basic usage:
>>>listToMaybe []Nothing
>>>listToMaybe [9]Just 9
>>>listToMaybe [1,2,3]Just 1
Composing maybeToList with listToMaybe should be the identity
on singleton/empty lists:
>>>maybeToList $ listToMaybe [5][5]>>>maybeToList $ listToMaybe [][]
But not on lists with more than one element:
>>>maybeToList $ listToMaybe [1,2,3][1]
catMaybes :: [Maybe a] -> [a] #
The catMaybes function takes a list of Maybes and returns
a list of all the Just values.
Examples
Basic usage:
>>>catMaybes [Just 1, Nothing, Just 3][1,3]
When constructing a list of Maybe values, catMaybes can be used
to return all of the "success" results (if the list is the result
of a map, then mapMaybe would be more appropriate):
>>>import Text.Read ( readMaybe )>>>[readMaybe x :: Maybe Int | x <- ["1", "Foo", "3"] ][Just 1,Nothing,Just 3]>>>catMaybes $ [readMaybe x :: Maybe Int | x <- ["1", "Foo", "3"] ][1,3]
($>) :: Functor f => f a -> b -> f b infixl 4 #
Flipped version of <$.
Examples
Replace the contents of a with a constant
Maybe IntString:
>>>Nothing $> "foo"Nothing>>>Just 90210 $> "foo"Just "foo"
Replace the contents of an
with a constant Either Int IntString, resulting in an :Either
Int String
>>>Left 8675309 $> "foo"Left 8675309>>>Right 8675309 $> "foo"Right "foo"
Replace each element of a list with a constant String:
>>>[1,2,3] $> "foo"["foo","foo","foo"]
Replace the second element of a pair with a constant String:
>>>(1,2) $> "foo"(1,"foo")
Since: base-4.7.0.0
void :: Functor f => f a -> f () #
discards or ignores the result of evaluation, such
as the return value of an void valueIO action.
Examples
Replace the contents of a with unit:Maybe Int
>>>void NothingNothing>>>void (Just 3)Just ()
Replace the contents of an
with unit, resulting in an Either Int Int:Either Int ()
>>>void (Left 8675309)Left 8675309>>>void (Right 8675309)Right ()
Replace every element of a list with unit:
>>>void [1,2,3][(),(),()]
Replace the second element of a pair with unit:
>>>void (1,2)(1,())
Discard the result of an IO action:
>>>mapM print [1,2]1 2 [(),()]>>>void $ mapM print [1,2]1 2
The Down type allows you to reverse sort order conveniently. A value of type
contains a value of type Down aa (represented as ).Down a
If a has an instance associated with it then comparing two
values thus wrapped will give you the opposite of their normal sort order.
This is particularly useful when sorting in generalised list comprehensions,
as in: Ordthen sortWith by .Down x
>>>compare True FalseGT
>>>compare (Down True) (Down False)LT
If a has a instance then the wrapped instance also respects
the reversed ordering by exchanging the values of Bounded and
minBound.maxBound
>>>minBound :: Int-9223372036854775808
>>>minBound :: Down IntDown 9223372036854775807
All other instances of behave as they do for Down aa.
Since: base-4.6.0.0
Instances
| MonadFix Down | Since: base-4.12.0.0 | ||||
Defined in Control.Monad.Fix | |||||
| MonadZip Down | Since: base-4.12.0.0 | ||||
| Foldable Down | Since: base-4.12.0.0 | ||||
Defined in Data.Foldable Methods fold :: Monoid m => Down m -> m # foldMap :: Monoid m => (a -> m) -> Down a -> m # foldMap' :: Monoid m => (a -> m) -> Down a -> m # foldr :: (a -> b -> b) -> b -> Down a -> b # foldr' :: (a -> b -> b) -> b -> Down a -> b # foldl :: (b -> a -> b) -> b -> Down a -> b # foldl' :: (b -> a -> b) -> b -> Down a -> b # foldr1 :: (a -> a -> a) -> Down a -> a # foldl1 :: (a -> a -> a) -> Down a -> a # elem :: Eq a => a -> Down a -> Bool # maximum :: Ord a => Down a -> a # | |||||
| Foldable1 Down | Since: base-4.18.0.0 | ||||
Defined in Data.Foldable1 Methods fold1 :: Semigroup m => Down m -> m # foldMap1 :: Semigroup m => (a -> m) -> Down a -> m # foldMap1' :: Semigroup m => (a -> m) -> Down a -> m # toNonEmpty :: Down a -> NonEmpty a # maximum :: Ord a => Down a -> a # minimum :: Ord a => Down a -> a # foldrMap1 :: (a -> b) -> (a -> b -> b) -> Down a -> b # foldlMap1' :: (a -> b) -> (b -> a -> b) -> Down a -> b # foldlMap1 :: (a -> b) -> (b -> a -> b) -> Down a -> b # foldrMap1' :: (a -> b) -> (a -> b -> b) -> Down a -> b # | |||||
| Eq1 Down | Since: base-4.12.0.0 | ||||
| Ord1 Down | Since: base-4.12.0.0 | ||||
Defined in Data.Functor.Classes | |||||
| Read1 Down | Since: base-4.12.0.0 | ||||
Defined in Data.Functor.Classes | |||||
| Show1 Down | Since: base-4.12.0.0 | ||||
| Traversable Down | Since: base-4.12.0.0 | ||||
| Applicative Down | Since: base-4.11.0.0 | ||||
| Functor Down | Since: base-4.11.0.0 | ||||
| Monad Down | Since: base-4.11.0.0 | ||||
| NFData1 Down | Since: deepseq-1.4.3.0 | ||||
Defined in Control.DeepSeq | |||||
| Generic1 Down | |||||
Defined in GHC.Generics Associated Types
| |||||
| Data a => Data (Down a) | Since: base-4.12.0.0 | ||||
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Down a -> c (Down a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Down a) # toConstr :: Down a -> Constr # dataTypeOf :: Down a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Down a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Down a)) # gmapT :: (forall b. Data b => b -> b) -> Down a -> Down a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Down a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Down a -> r # gmapQ :: (forall d. Data d => d -> u) -> Down a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Down a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Down a -> m (Down a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Down a -> m (Down a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Down a -> m (Down a) # | |||||
| Storable a => Storable (Down a) | Since: base-4.14.0.0 | ||||
| Monoid a => Monoid (Down a) | Since: base-4.11.0.0 | ||||
| Semigroup a => Semigroup (Down a) | Since: base-4.11.0.0 | ||||
| Bits a => Bits (Down a) | Since: base-4.14.0.0 | ||||
Defined in Data.Ord Methods (.&.) :: Down a -> Down a -> Down a # (.|.) :: Down a -> Down a -> Down a # xor :: Down a -> Down a -> Down a # complement :: Down a -> Down a # shift :: Down a -> Int -> Down a # rotate :: Down a -> Int -> Down a # setBit :: Down a -> Int -> Down a # clearBit :: Down a -> Int -> Down a # complementBit :: Down a -> Int -> Down a # testBit :: Down a -> Int -> Bool # bitSizeMaybe :: Down a -> Maybe Int # shiftL :: Down a -> Int -> Down a # unsafeShiftL :: Down a -> Int -> Down a # shiftR :: Down a -> Int -> Down a # unsafeShiftR :: Down a -> Int -> Down a # rotateL :: Down a -> Int -> Down a # | |||||
| FiniteBits a => FiniteBits (Down a) | Since: base-4.14.0.0 | ||||
Defined in Data.Ord Methods finiteBitSize :: Down a -> Int # countLeadingZeros :: Down a -> Int # countTrailingZeros :: Down a -> Int # | |||||
| Bounded a => Bounded (Down a) | Swaps Since: base-4.14.0.0 | ||||
| (Enum a, Bounded a, Eq a) => Enum (Down a) | Swaps Since: base-4.18.0.0 | ||||
Defined in Data.Ord | |||||
| Floating a => Floating (Down a) | Since: base-4.14.0.0 | ||||
| RealFloat a => RealFloat (Down a) | Since: base-4.14.0.0 | ||||
Defined in Data.Ord Methods floatRadix :: Down a -> Integer # floatDigits :: Down a -> Int # floatRange :: Down a -> (Int, Int) # decodeFloat :: Down a -> (Integer, Int) # encodeFloat :: Integer -> Int -> Down a # significand :: Down a -> Down a # scaleFloat :: Int -> Down a -> Down a # isInfinite :: Down a -> Bool # isDenormalized :: Down a -> Bool # isNegativeZero :: Down a -> Bool # | |||||
| Generic (Down a) | |||||
Defined in GHC.Generics Associated Types
| |||||
| Ix a => Ix (Down a) | Since: base-4.14.0.0 | ||||
| Num a => Num (Down a) | Since: base-4.11.0.0 | ||||
| Read a => Read (Down a) | This instance would be equivalent to the derived instances of the
Since: base-4.7.0.0 | ||||
| Fractional a => Fractional (Down a) | Since: base-4.14.0.0 | ||||
| Real a => Real (Down a) | Since: base-4.14.0.0 | ||||
Defined in Data.Ord Methods toRational :: Down a -> Rational # | |||||
| RealFrac a => RealFrac (Down a) | Since: base-4.14.0.0 | ||||
| Show a => Show (Down a) | This instance would be equivalent to the derived instances of the
Since: base-4.7.0.0 | ||||
| NFData a => NFData (Down a) | Since: deepseq-1.4.0.0 | ||||
Defined in Control.DeepSeq | |||||
| Eq a => Eq (Down a) | Since: base-4.6.0.0 | ||||
| Ord a => Ord (Down a) | Since: base-4.6.0.0 | ||||
| type Rep1 Down | Since: base-4.12.0.0 | ||||
Defined in GHC.Generics | |||||
| type Rep (Down a) | Since: base-4.12.0.0 | ||||
Defined in GHC.Generics | |||||
comparing :: Ord a => (b -> a) -> b -> b -> Ordering #
comparing p x y = compare (p x) (p y)
Useful combinator for use in conjunction with the xxxBy family
of functions from Data.List, for example:
... sortBy (comparing fst) ...
data ByteString #
A space-efficient representation of a Word8 vector, supporting many
efficient operations.
A ByteString contains 8-bit bytes, or by using the operations from
Data.ByteString.Char8 it can be interpreted as containing 8-bit
characters.
Instances
A class of types that can be fully evaluated.
Since: deepseq-1.1.0.0
Minimal complete definition
Nothing
Methods
rnf should reduce its argument to normal form (that is, fully
evaluate all sub-components), and then return ().
Generic NFData deriving
Starting with GHC 7.2, you can automatically derive instances
for types possessing a Generic instance.
Note: Generic1 can be auto-derived starting with GHC 7.4
{-# LANGUAGE DeriveGeneric #-}
import GHC.Generics (Generic, Generic1)
import Control.DeepSeq
data Foo a = Foo a String
deriving (Eq, Generic, Generic1)
instance NFData a => NFData (Foo a)
instance NFData1 Foo
data Colour = Red | Green | Blue
deriving Generic
instance NFData ColourStarting with GHC 7.10, the example above can be written more
concisely by enabling the new DeriveAnyClass extension:
{-# LANGUAGE DeriveGeneric, DeriveAnyClass #-}
import GHC.Generics (Generic)
import Control.DeepSeq
data Foo a = Foo a String
deriving (Eq, Generic, Generic1, NFData, NFData1)
data Colour = Red | Green | Blue
deriving (Generic, NFData)
Compatibility with previous deepseq versions
Prior to version 1.4.0.0, the default implementation of the rnf
method was defined as
rnfa =seqa ()
However, starting with deepseq-1.4.0.0, the default
implementation is based on DefaultSignatures allowing for
more accurate auto-derived NFData instances. If you need the
previously used exact default rnf method implementation
semantics, use
instance NFData Colour where rnf x = seq x ()
or alternatively
instance NFData Colour where rnf = rwhnf
or
{-# LANGUAGE BangPatterns #-}
instance NFData Colour where rnf !_ = ()Instances
| NFData ByteArray | Since: deepseq-1.4.7.0 |
Defined in Control.DeepSeq | |
| NFData All | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData Any | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData TypeRep | NOTE: Prior to Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData Unique | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData Version | Since: deepseq-1.3.0.0 |
Defined in Control.DeepSeq | |
| NFData CBool | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
| NFData CChar | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData CClock | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData CDouble | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData CFile | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData CFloat | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData CFpos | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData CInt | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData CIntMax | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData CIntPtr | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData CJmpBuf | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData CLLong | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData CLong | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData CPtrdiff | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData CSChar | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData CSUSeconds | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq Methods rnf :: CSUSeconds -> () # | |
| NFData CShort | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData CSigAtomic | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq Methods rnf :: CSigAtomic -> () # | |
| NFData CSize | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData CTime | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData CUChar | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData CUInt | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData CUIntMax | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData CUIntPtr | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData CULLong | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData CULong | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData CUSeconds | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData CUShort | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData CWchar | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData Void | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData ThreadId | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData Fingerprint | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq Methods rnf :: Fingerprint -> () # | |
| NFData MaskingState | Since: deepseq-1.4.4.0 |
Defined in Control.DeepSeq Methods rnf :: MaskingState -> () # | |
| NFData ExitCode | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
| NFData Int16 | |
Defined in Control.DeepSeq | |
| NFData Int32 | |
Defined in Control.DeepSeq | |
| NFData Int64 | |
Defined in Control.DeepSeq | |
| NFData Int8 | |
Defined in Control.DeepSeq | |
| NFData CallStack | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
| NFData SrcLoc | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
| NFData Word16 | |
Defined in Control.DeepSeq | |
| NFData Word32 | |
Defined in Control.DeepSeq | |
| NFData Word64 | |
Defined in Control.DeepSeq | |
| NFData Word8 | |
Defined in Control.DeepSeq | |
| NFData ByteString | |
Defined in Data.ByteString.Internal.Type Methods rnf :: ByteString -> () # | |
| NFData ByteString | |
Defined in Data.ByteString.Lazy.Internal Methods rnf :: ByteString -> () # | |
| NFData ShortByteString | |
Defined in Data.ByteString.Short.Internal Methods rnf :: ShortByteString -> () # | |
| NFData Module | Since: deepseq-1.4.8.0 |
Defined in Control.DeepSeq | |
| NFData Ordering | |
Defined in Control.DeepSeq | |
| NFData TyCon | NOTE: Prior to Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData UnicodeException | |
Defined in Data.Text.Encoding.Error Methods rnf :: UnicodeException -> () # | |
| NFData Integer | |
Defined in Control.DeepSeq | |
| NFData Natural | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData () | |
Defined in Control.DeepSeq | |
| NFData Bool | |
Defined in Control.DeepSeq | |
| NFData Char | |
Defined in Control.DeepSeq | |
| NFData Double | |
Defined in Control.DeepSeq | |
| NFData Float | |
Defined in Control.DeepSeq | |
| NFData Int | |
Defined in Control.DeepSeq | |
| NFData Word | |
Defined in Control.DeepSeq | |
| NFData a => NFData (ZipList a) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData (MutableByteArray s) | Since: deepseq-1.4.8.0 |
Defined in Control.DeepSeq Methods rnf :: MutableByteArray s -> () # | |
| NFData a => NFData (Complex a) | |
Defined in Control.DeepSeq | |
| NFData a => NFData (Identity a) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData a => NFData (First a) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData a => NFData (Last a) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData a => NFData (Down a) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData a => NFData (First a) | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
| NFData a => NFData (Last a) | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
| NFData a => NFData (Max a) | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
| NFData a => NFData (Min a) | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
| NFData m => NFData (WrappedMonoid m) | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq Methods rnf :: WrappedMonoid m -> () # | |
| NFData a => NFData (Dual a) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData a => NFData (Product a) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData a => NFData (Sum a) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData a => NFData (NonEmpty a) | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
| NFData (IORef a) | NOTE: Only strict in the reference and not the referenced value. Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
| NFData (MVar a) | NOTE: Only strict in the reference and not the referenced value. Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
| NFData (FunPtr a) | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
| NFData (Ptr a) | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
| NFData a => NFData (Ratio a) | |
Defined in Control.DeepSeq | |
| NFData (StableName a) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq Methods rnf :: StableName a -> () # | |
| NFData a => NFData (Maybe a) | |
Defined in Control.DeepSeq | |
| NFData a => NFData (Solo a) | Since: deepseq-1.4.6.0 |
Defined in Control.DeepSeq | |
| NFData a => NFData [a] | |
Defined in Control.DeepSeq | |
| (NFData a, NFData b) => NFData (Either a b) | |
Defined in Control.DeepSeq | |
| NFData (Fixed a) | Since: deepseq-1.3.0.0 |
Defined in Control.DeepSeq | |
| NFData (Proxy a) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| (NFData a, NFData b) => NFData (Arg a b) | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
| NFData (TypeRep a) | Since: deepseq-1.4.8.0 |
Defined in Control.DeepSeq | |
| (NFData a, NFData b) => NFData (Array a b) | |
Defined in Control.DeepSeq | |
| NFData (STRef s a) | NOTE: Only strict in the reference and not the referenced value. Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
| (NFData a, NFData b) => NFData (a, b) | |
Defined in Control.DeepSeq | |
| NFData (a -> b) | This instance is for convenience and consistency with Since: deepseq-1.3.0.0 |
Defined in Control.DeepSeq | |
| NFData a => NFData (Const a b) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData (a :~: b) | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
| (NFData a1, NFData a2, NFData a3) => NFData (a1, a2, a3) | |
Defined in Control.DeepSeq | |
| (NFData (f a), NFData (g a)) => NFData (Product f g a) | Note: in Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
| (NFData (f a), NFData (g a)) => NFData (Sum f g a) | Note: in Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
| NFData (a :~~: b) | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
| (NFData a1, NFData a2, NFData a3, NFData a4) => NFData (a1, a2, a3, a4) | |
Defined in Control.DeepSeq | |
| NFData (f (g a)) => NFData (Compose f g a) | Note: in Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
| (NFData a1, NFData a2, NFData a3, NFData a4, NFData a5) => NFData (a1, a2, a3, a4, a5) | |
Defined in Control.DeepSeq | |
| (NFData a1, NFData a2, NFData a3, NFData a4, NFData a5, NFData a6) => NFData (a1, a2, a3, a4, a5, a6) | |
Defined in Control.DeepSeq | |
| (NFData a1, NFData a2, NFData a3, NFData a4, NFData a5, NFData a6, NFData a7) => NFData (a1, a2, a3, a4, a5, a6, a7) | |
Defined in Control.DeepSeq | |
| (NFData a1, NFData a2, NFData a3, NFData a4, NFData a5, NFData a6, NFData a7, NFData a8) => NFData (a1, a2, a3, a4, a5, a6, a7, a8) | |
Defined in Control.DeepSeq | |
| (NFData a1, NFData a2, NFData a3, NFData a4, NFData a5, NFData a6, NFData a7, NFData a8, NFData a9) => NFData (a1, a2, a3, a4, a5, a6, a7, a8, a9) | |
Defined in Control.DeepSeq | |
($!!) :: NFData a => (a -> b) -> a -> b infixr 0 #
The deep analogue of $!. f $!! x fully evaluates x
before returning f x.
There is no guarantee about the ordering of evaluation.
f x may be evaluated before x is fully evaluated.
To impose an actual order on evaluation, use pseq from
Control.Parallel in the parallel package.
Since: deepseq-1.2.0.0
A variant of deepseq that is useful in some circumstances:
force x = x `deepseq` x
force x fully evaluates x, and then returns it. Note that
force x only performs evaluation when the value of force x
itself is demanded, so essentially it turns shallow evaluation into
deep evaluation.
force can be conveniently used in combination with ViewPatterns:
{-# LANGUAGE BangPatterns, ViewPatterns #-}
import Control.DeepSeq
someFun :: ComplexData -> SomeResult
someFun (force -> !arg) = {- 'arg' will be fully evaluated -}Another useful application is to combine force with
evaluate in order to force deep evaluation
relative to other IO operations:
import Control.Exception (evaluate)
import Control.DeepSeq
main = do
result <- evaluate $ force $ pureComputation
{- 'result' will be fully evaluated at this point -}
return ()Finally, here's an exception safe variant of the readFile' example:
readFile' :: FilePath -> IO String
readFile' fn = bracket (openFile fn ReadMode) hClose $ \h ->
evaluate . force =<< hGetContents hSince: deepseq-1.2.0.0