module HaskellWorks.Tuple ( uncurry3, uncurry4, uncurry5, uncurry6, uncurry7, uncurry8, uncurry9, curry3, curry4, curry5, curry6, curry7, curry8, curry9 ) where uncurry3 :: (a -> b -> c -> z) -> (a, b, c) -> z uncurry3 :: forall a b c z. (a -> b -> c -> z) -> (a, b, c) -> z uncurry3 a -> b -> c -> z fun (a a, b b, c c) = a -> b -> c -> z fun a a b b c c uncurry4 :: (a -> b -> c -> d -> z) -> (a, b, c, d) -> z uncurry4 :: forall a b c d z. (a -> b -> c -> d -> z) -> (a, b, c, d) -> z uncurry4 a -> b -> c -> d -> z fun (a a, b b, c c, d d) = a -> b -> c -> d -> z fun a a b b c c d d uncurry5 :: (a -> b -> c -> d -> e -> z) -> (a, b, c, d, e) -> z uncurry5 :: forall a b c d e z. (a -> b -> c -> d -> e -> z) -> (a, b, c, d, e) -> z uncurry5 a -> b -> c -> d -> e -> z fun (a a, b b, c c, d d, e e) = a -> b -> c -> d -> e -> z fun a a b b c c d d e e uncurry6 :: (a -> b -> c -> d -> e -> f -> z) -> (a, b, c, d, e, f) -> z uncurry6 :: forall a b c d e f z. (a -> b -> c -> d -> e -> f -> z) -> (a, b, c, d, e, f) -> z uncurry6 a -> b -> c -> d -> e -> f -> z fun (a a, b b, c c, d d, e e, f f) = a -> b -> c -> d -> e -> f -> z fun a a b b c c d d e e f f uncurry7 :: (a -> b -> c -> d -> e -> f -> g -> z) -> (a, b, c, d, e, f, g) -> z uncurry7 :: forall a b c d e f g z. (a -> b -> c -> d -> e -> f -> g -> z) -> (a, b, c, d, e, f, g) -> z uncurry7 a -> b -> c -> d -> e -> f -> g -> z fun (a a, b b, c c, d d, e e, f f, g g) = a -> b -> c -> d -> e -> f -> g -> z fun a a b b c c d d e e f f g g uncurry8 :: (a -> b -> c -> d -> e -> f -> g -> h -> z) -> (a, b, c, d, e, f, g, h) -> z uncurry8 :: forall a b c d e f g h z. (a -> b -> c -> d -> e -> f -> g -> h -> z) -> (a, b, c, d, e, f, g, h) -> z uncurry8 a -> b -> c -> d -> e -> f -> g -> h -> z fun (a a, b b, c c, d d, e e, f f, g g, h h) = a -> b -> c -> d -> e -> f -> g -> h -> z fun a a b b c c d d e e f f g g h h uncurry9 :: (a -> b -> c -> d -> e -> f -> g -> h -> i -> z) -> (a, b, c, d, e, f, g, h, i) -> z uncurry9 :: forall a b c d e f g h i z. (a -> b -> c -> d -> e -> f -> g -> h -> i -> z) -> (a, b, c, d, e, f, g, h, i) -> z uncurry9 a -> b -> c -> d -> e -> f -> g -> h -> i -> z fun (a a, b b, c c, d d, e e, f f, g g, h h, i i) = a -> b -> c -> d -> e -> f -> g -> h -> i -> z fun a a b b c c d d e e f f g g h h i i curry3 :: ((a, b, c) -> z) -> a -> b -> c -> z curry3 :: forall a b c z. ((a, b, c) -> z) -> a -> b -> c -> z curry3 (a, b, c) -> z fun a a b b c c = (a, b, c) -> z fun (a a, b b, c c) curry4 :: ((a, b, c, d) -> z) -> a -> b -> c -> d -> z curry4 :: forall a b c d z. ((a, b, c, d) -> z) -> a -> b -> c -> d -> z curry4 (a, b, c, d) -> z fun a a b b c c d d = (a, b, c, d) -> z fun (a a, b b, c c, d d) curry5 :: ((a, b, c, d, e) -> z) -> a -> b -> c -> d -> e -> z curry5 :: forall a b c d e z. ((a, b, c, d, e) -> z) -> a -> b -> c -> d -> e -> z curry5 (a, b, c, d, e) -> z fun a a b b c c d d e e = (a, b, c, d, e) -> z fun (a a, b b, c c, d d, e e) curry6 :: ((a, b, c, d, e, f) -> z) -> a -> b -> c -> d -> e -> f -> z curry6 :: forall a b c d e f z. ((a, b, c, d, e, f) -> z) -> a -> b -> c -> d -> e -> f -> z curry6 (a, b, c, d, e, f) -> z fun a a b b c c d d e e f f = (a, b, c, d, e, f) -> z fun (a a, b b, c c, d d, e e, f f) curry7 :: ((a, b, c, d, e, f, g) -> z) -> a -> b -> c -> d -> e -> f -> g -> z curry7 :: forall a b c d e f g z. ((a, b, c, d, e, f, g) -> z) -> a -> b -> c -> d -> e -> f -> g -> z curry7 (a, b, c, d, e, f, g) -> z fun a a b b c c d d e e f f g g = (a, b, c, d, e, f, g) -> z fun (a a, b b, c c, d d, e e, f f, g g) curry8 :: ((a, b, c, d, e, f, g, h) -> z) -> a -> b -> c -> d -> e -> f -> g -> h -> z curry8 :: forall a b c d e f g h z. ((a, b, c, d, e, f, g, h) -> z) -> a -> b -> c -> d -> e -> f -> g -> h -> z curry8 (a, b, c, d, e, f, g, h) -> z fun a a b b c c d d e e f f g g h h = (a, b, c, d, e, f, g, h) -> z fun (a a, b b, c c, d d, e e, f f, g g, h h) curry9 :: ((a, b, c, d, e, f, g, h, i) -> z) -> a -> b -> c -> d -> e -> f -> g -> h -> i -> z curry9 :: forall a b c d e f g h i z. ((a, b, c, d, e, f, g, h, i) -> z) -> a -> b -> c -> d -> e -> f -> g -> h -> i -> z curry9 (a, b, c, d, e, f, g, h, i) -> z fun a a b b c c d d e e f f g g h h i i = (a, b, c, d, e, f, g, h, i) -> z fun (a a, b b, c c, d d, e e, f f, g g, h h, i i)