{-# LANGUAGE AllowAmbiguousTypes, TypeApplications #-}
module Test.Credit.Deque.Base (DequeOp(..), Deque(..), BoundedDeque(..), D, BD) where
import Prelude hiding (concat)
import Control.Monad.Credit
import Test.Credit
import Test.QuickCheck
data DequeOp a = Cons a | Snoc a | Uncons | Unsnoc | Concat
deriving (DequeOp a -> DequeOp a -> Bool
(DequeOp a -> DequeOp a -> Bool)
-> (DequeOp a -> DequeOp a -> Bool) -> Eq (DequeOp a)
forall a. Eq a => DequeOp a -> DequeOp a -> Bool
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
$c== :: forall a. Eq a => DequeOp a -> DequeOp a -> Bool
== :: DequeOp a -> DequeOp a -> Bool
$c/= :: forall a. Eq a => DequeOp a -> DequeOp a -> Bool
/= :: DequeOp a -> DequeOp a -> Bool
Eq, Eq (DequeOp a)
Eq (DequeOp a) =>
(DequeOp a -> DequeOp a -> Ordering)
-> (DequeOp a -> DequeOp a -> Bool)
-> (DequeOp a -> DequeOp a -> Bool)
-> (DequeOp a -> DequeOp a -> Bool)
-> (DequeOp a -> DequeOp a -> Bool)
-> (DequeOp a -> DequeOp a -> DequeOp a)
-> (DequeOp a -> DequeOp a -> DequeOp a)
-> Ord (DequeOp a)
DequeOp a -> DequeOp a -> Bool
DequeOp a -> DequeOp a -> Ordering
DequeOp a -> DequeOp a -> DequeOp a
forall a.
Eq a =>
(a -> a -> Ordering)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> a)
-> (a -> a -> a)
-> Ord a
forall a. Ord a => Eq (DequeOp a)
forall a. Ord a => DequeOp a -> DequeOp a -> Bool
forall a. Ord a => DequeOp a -> DequeOp a -> Ordering
forall a. Ord a => DequeOp a -> DequeOp a -> DequeOp a
$ccompare :: forall a. Ord a => DequeOp a -> DequeOp a -> Ordering
compare :: DequeOp a -> DequeOp a -> Ordering
$c< :: forall a. Ord a => DequeOp a -> DequeOp a -> Bool
< :: DequeOp a -> DequeOp a -> Bool
$c<= :: forall a. Ord a => DequeOp a -> DequeOp a -> Bool
<= :: DequeOp a -> DequeOp a -> Bool
$c> :: forall a. Ord a => DequeOp a -> DequeOp a -> Bool
> :: DequeOp a -> DequeOp a -> Bool
$c>= :: forall a. Ord a => DequeOp a -> DequeOp a -> Bool
>= :: DequeOp a -> DequeOp a -> Bool
$cmax :: forall a. Ord a => DequeOp a -> DequeOp a -> DequeOp a
max :: DequeOp a -> DequeOp a -> DequeOp a
$cmin :: forall a. Ord a => DequeOp a -> DequeOp a -> DequeOp a
min :: DequeOp a -> DequeOp a -> DequeOp a
Ord, Int -> DequeOp a -> ShowS
[DequeOp a] -> ShowS
DequeOp a -> String
(Int -> DequeOp a -> ShowS)
-> (DequeOp a -> String)
-> ([DequeOp a] -> ShowS)
-> Show (DequeOp a)
forall a. Show a => Int -> DequeOp a -> ShowS
forall a. Show a => [DequeOp a] -> ShowS
forall a. Show a => DequeOp a -> String
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
$cshowsPrec :: forall a. Show a => Int -> DequeOp a -> ShowS
showsPrec :: Int -> DequeOp a -> ShowS
$cshow :: forall a. Show a => DequeOp a -> String
show :: DequeOp a -> String
$cshowList :: forall a. Show a => [DequeOp a] -> ShowS
showList :: [DequeOp a] -> ShowS
Show)
instance Arbitrary a => Arbitrary (DequeOp a) where
arbitrary :: Gen (DequeOp a)
arbitrary = [(Int, Gen (DequeOp a))] -> Gen (DequeOp a)
forall a. HasCallStack => [(Int, Gen a)] -> Gen a
frequency
[ (Int
7, a -> DequeOp a
forall a. a -> DequeOp a
Cons (a -> DequeOp a) -> Gen a -> Gen (DequeOp a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Gen a
forall a. Arbitrary a => Gen a
arbitrary)
, (Int
4, a -> DequeOp a
forall a. a -> DequeOp a
Snoc (a -> DequeOp a) -> Gen a -> Gen (DequeOp a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Gen a
forall a. Arbitrary a => Gen a
arbitrary)
, (Int
2, DequeOp a -> Gen (DequeOp a)
forall a. a -> Gen a
forall (f :: * -> *) a. Applicative f => a -> f a
pure DequeOp a
forall a. DequeOp a
Uncons)
, (Int
6, DequeOp a -> Gen (DequeOp a)
forall a. a -> Gen a
forall (f :: * -> *) a. Applicative f => a -> f a
pure DequeOp a
forall a. DequeOp a
Unsnoc)
, (Int
1, DequeOp a -> Gen (DequeOp a)
forall a. a -> Gen a
forall (f :: * -> *) a. Applicative f => a -> f a
pure DequeOp a
forall a. DequeOp a
Concat)
]
class Deque q where
empty :: MonadLazy m => m (q a m)
cons :: MonadInherit m => a -> q a m -> m (q a m)
snoc :: MonadInherit m => q a m -> a -> m (q a m)
uncons :: MonadInherit m => q a m -> m (Maybe (a, q a m))
unsnoc :: MonadInherit m => q a m -> m (Maybe (q a m, a))
concat :: MonadInherit m => q a m -> q a m -> m (q a m)
class Deque q => BoundedDeque q where
qcost :: Size -> DequeOp a -> Credit
data D q a m = D (q (PrettyCell a) m)
instance (MemoryCell m (q (PrettyCell a) m)) => MemoryCell m (D q a m) where
prettyCell :: D q a m -> m Memory
prettyCell (D q (PrettyCell a) m
q) = q (PrettyCell a) m -> m Memory
forall (m :: * -> *) a. MemoryCell m a => a -> m Memory
prettyCell q (PrettyCell a) m
q
instance (MemoryStructure (q (PrettyCell a))) => MemoryStructure (D q a) where
prettyStructure :: forall (m :: * -> *). MonadMemory m => D q a m -> m Memory
prettyStructure (D q (PrettyCell a) m
q) = q (PrettyCell a) m -> m Memory
forall (m :: * -> *).
MonadMemory m =>
q (PrettyCell a) m -> m Memory
forall (t :: (* -> *) -> *) (m :: * -> *).
(MemoryStructure t, MonadMemory m) =>
t m -> m Memory
prettyStructure q (PrettyCell a) m
q
instance (Arbitrary a, BoundedDeque q, Show a) => DataStructure (D q a) (DequeOp a) where
cost :: Size -> DequeOp a -> Credit
cost Size
_ DequeOp a
Concat = Credit
0
cost Size
sz DequeOp a
op = forall (q :: * -> (* -> *) -> *) a.
BoundedDeque q =>
Size -> DequeOp a -> Credit
qcost @q Size
sz DequeOp a
op
create :: forall (m :: * -> *). MonadLazy m => m (D q a m)
create = q (PrettyCell a) m -> D q a m
forall {k} (q :: * -> k -> *) a (m :: k).
q (PrettyCell a) m -> D q a m
D (q (PrettyCell a) m -> D q a m)
-> m (q (PrettyCell a) m) -> m (D q a m)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> m (q (PrettyCell a) m)
forall (m :: * -> *) a. MonadLazy m => m (q a m)
forall (q :: * -> (* -> *) -> *) (m :: * -> *) a.
(Deque q, MonadLazy m) =>
m (q a m)
empty
perform :: forall (m :: * -> *).
MonadInherit m =>
Size -> D q a m -> DequeOp a -> m (Size, D q a m)
perform Size
sz (D q (PrettyCell a) m
q) (Cons a
x) = (Size
sz Size -> Size -> Size
forall a. Num a => a -> a -> a
+ Size
1,) (D q a m -> (Size, D q a m))
-> (q (PrettyCell a) m -> D q a m)
-> q (PrettyCell a) m
-> (Size, D q a m)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> q (PrettyCell a) m -> D q a m
forall {k} (q :: * -> k -> *) a (m :: k).
q (PrettyCell a) m -> D q a m
D (q (PrettyCell a) m -> (Size, D q a m))
-> m (q (PrettyCell a) m) -> m (Size, D q a m)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> PrettyCell a -> q (PrettyCell a) m -> m (q (PrettyCell a) m)
forall (m :: * -> *) a. MonadInherit m => a -> q a m -> m (q a m)
forall (q :: * -> (* -> *) -> *) (m :: * -> *) a.
(Deque q, MonadInherit m) =>
a -> q a m -> m (q a m)
cons (a -> PrettyCell a
forall a. a -> PrettyCell a
PrettyCell a
x) q (PrettyCell a) m
q
perform Size
sz (D q (PrettyCell a) m
q) (Snoc a
x) = (Size
sz Size -> Size -> Size
forall a. Num a => a -> a -> a
+ Size
1,) (D q a m -> (Size, D q a m))
-> (q (PrettyCell a) m -> D q a m)
-> q (PrettyCell a) m
-> (Size, D q a m)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> q (PrettyCell a) m -> D q a m
forall {k} (q :: * -> k -> *) a (m :: k).
q (PrettyCell a) m -> D q a m
D (q (PrettyCell a) m -> (Size, D q a m))
-> m (q (PrettyCell a) m) -> m (Size, D q a m)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> q (PrettyCell a) m -> PrettyCell a -> m (q (PrettyCell a) m)
forall (m :: * -> *) a. MonadInherit m => q a m -> a -> m (q a m)
forall (q :: * -> (* -> *) -> *) (m :: * -> *) a.
(Deque q, MonadInherit m) =>
q a m -> a -> m (q a m)
snoc q (PrettyCell a) m
q (a -> PrettyCell a
forall a. a -> PrettyCell a
PrettyCell a
x)
perform Size
sz (D q (PrettyCell a) m
q) DequeOp a
Uncons = do
Maybe (PrettyCell a, q (PrettyCell a) m)
m <- q (PrettyCell a) m -> m (Maybe (PrettyCell a, q (PrettyCell a) m))
forall (m :: * -> *) a.
MonadInherit m =>
q a m -> m (Maybe (a, q a m))
forall (q :: * -> (* -> *) -> *) (m :: * -> *) a.
(Deque q, MonadInherit m) =>
q a m -> m (Maybe (a, q a m))
uncons q (PrettyCell a) m
q
case Maybe (PrettyCell a, q (PrettyCell a) m)
m of
Maybe (PrettyCell a, q (PrettyCell a) m)
Nothing -> (Size
sz,) (D q a m -> (Size, D q a m))
-> (q (PrettyCell a) m -> D q a m)
-> q (PrettyCell a) m
-> (Size, D q a m)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> q (PrettyCell a) m -> D q a m
forall {k} (q :: * -> k -> *) a (m :: k).
q (PrettyCell a) m -> D q a m
D (q (PrettyCell a) m -> (Size, D q a m))
-> m (q (PrettyCell a) m) -> m (Size, D q a m)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> m (q (PrettyCell a) m)
forall (m :: * -> *) a. MonadLazy m => m (q a m)
forall (q :: * -> (* -> *) -> *) (m :: * -> *) a.
(Deque q, MonadLazy m) =>
m (q a m)
empty
Just (PrettyCell a
_, q (PrettyCell a) m
q') -> (Size, D q a m) -> m (Size, D q a m)
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Size
sz Size -> Size -> Size
forall a. Num a => a -> a -> a
- Size
1, q (PrettyCell a) m -> D q a m
forall {k} (q :: * -> k -> *) a (m :: k).
q (PrettyCell a) m -> D q a m
D q (PrettyCell a) m
q')
perform Size
sz (D q (PrettyCell a) m
q) DequeOp a
Unsnoc = do
Maybe (q (PrettyCell a) m, PrettyCell a)
m <- q (PrettyCell a) m -> m (Maybe (q (PrettyCell a) m, PrettyCell a))
forall (m :: * -> *) a.
MonadInherit m =>
q a m -> m (Maybe (q a m, a))
forall (q :: * -> (* -> *) -> *) (m :: * -> *) a.
(Deque q, MonadInherit m) =>
q a m -> m (Maybe (q a m, a))
unsnoc q (PrettyCell a) m
q
case Maybe (q (PrettyCell a) m, PrettyCell a)
m of
Maybe (q (PrettyCell a) m, PrettyCell a)
Nothing -> (Size
sz,) (D q a m -> (Size, D q a m))
-> (q (PrettyCell a) m -> D q a m)
-> q (PrettyCell a) m
-> (Size, D q a m)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> q (PrettyCell a) m -> D q a m
forall {k} (q :: * -> k -> *) a (m :: k).
q (PrettyCell a) m -> D q a m
D (q (PrettyCell a) m -> (Size, D q a m))
-> m (q (PrettyCell a) m) -> m (Size, D q a m)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> m (q (PrettyCell a) m)
forall (m :: * -> *) a. MonadLazy m => m (q a m)
forall (q :: * -> (* -> *) -> *) (m :: * -> *) a.
(Deque q, MonadLazy m) =>
m (q a m)
empty
Just (q (PrettyCell a) m
q', PrettyCell a
_) -> (Size, D q a m) -> m (Size, D q a m)
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Size
sz Size -> Size -> Size
forall a. Num a => a -> a -> a
- Size
1, q (PrettyCell a) m -> D q a m
forall {k} (q :: * -> k -> *) a (m :: k).
q (PrettyCell a) m -> D q a m
D q (PrettyCell a) m
q')
perform Size
sz (D q (PrettyCell a) m
q) DequeOp a
Concat = (Size, D q a m) -> m (Size, D q a m)
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure ((Size, D q a m) -> m (Size, D q a m))
-> (Size, D q a m) -> m (Size, D q a m)
forall a b. (a -> b) -> a -> b
$ (Size
sz, q (PrettyCell a) m -> D q a m
forall {k} (q :: * -> k -> *) a (m :: k).
q (PrettyCell a) m -> D q a m
D q (PrettyCell a) m
q)
data BD q a m = BD (D q a m) (D q a m)
instance (MemoryCell m (q (PrettyCell a) m)) => MemoryCell m (BD q a m) where
prettyCell :: BD q a m -> m Memory
prettyCell (BD D q a m
q1 D q a m
q2) = do
Memory
q1' <- D q a m -> m Memory
forall (m :: * -> *) a. MemoryCell m a => a -> m Memory
prettyCell D q a m
q1
Memory
q2' <- D q a m -> m Memory
forall (m :: * -> *) a. MemoryCell m a => a -> m Memory
prettyCell D q a m
q2
Memory -> m Memory
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Memory -> m Memory) -> Memory -> m Memory
forall a b. (a -> b) -> a -> b
$ String -> [Memory] -> Memory
mkMCell String
"Concat" [Memory
q1', Memory
q2']
instance (MemoryStructure (q (PrettyCell a))) => MemoryStructure (BD q a) where
prettyStructure :: forall (m :: * -> *). MonadMemory m => BD q a m -> m Memory
prettyStructure (BD D q a m
q1 D q a m
q2) = do
Memory
q1' <- D q a m -> m Memory
forall (m :: * -> *). MonadMemory m => D q a m -> m Memory
forall (t :: (* -> *) -> *) (m :: * -> *).
(MemoryStructure t, MonadMemory m) =>
t m -> m Memory
prettyStructure D q a m
q1
Memory
q2' <- D q a m -> m Memory
forall (m :: * -> *). MonadMemory m => D q a m -> m Memory
forall (t :: (* -> *) -> *) (m :: * -> *).
(MemoryStructure t, MonadMemory m) =>
t m -> m Memory
prettyStructure D q a m
q2
Memory -> m Memory
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Memory -> m Memory) -> Memory -> m Memory
forall a b. (a -> b) -> a -> b
$ String -> [Memory] -> Memory
mkMCell String
"Concat" [Memory
q1', Memory
q2']
instance (Arbitrary a, BoundedDeque q, Show a) => DataStructure (BD q a) (DequeOp a) where
cost :: Size -> DequeOp a -> Credit
cost = forall (q :: * -> (* -> *) -> *) a.
BoundedDeque q =>
Size -> DequeOp a -> Credit
qcost @q
create :: forall (m :: * -> *). MonadLazy m => m (BD q a m)
create = do
q (PrettyCell a) m
q1 <- m (q (PrettyCell a) m)
forall (m :: * -> *) a. MonadLazy m => m (q a m)
forall (q :: * -> (* -> *) -> *) (m :: * -> *) a.
(Deque q, MonadLazy m) =>
m (q a m)
empty
q (PrettyCell a) m
q2 <- m (q (PrettyCell a) m)
forall (m :: * -> *) a. MonadLazy m => m (q a m)
forall (q :: * -> (* -> *) -> *) (m :: * -> *) a.
(Deque q, MonadLazy m) =>
m (q a m)
empty
BD q a m -> m (BD q a m)
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (BD q a m -> m (BD q a m)) -> BD q a m -> m (BD q a m)
forall a b. (a -> b) -> a -> b
$ D q a m -> D q a m -> BD q a m
forall {k} (q :: * -> k -> *) a (m :: k).
D q a m -> D q a m -> BD q a m
BD (q (PrettyCell a) m -> D q a m
forall {k} (q :: * -> k -> *) a (m :: k).
q (PrettyCell a) m -> D q a m
D q (PrettyCell a) m
q1) (q (PrettyCell a) m -> D q a m
forall {k} (q :: * -> k -> *) a (m :: k).
q (PrettyCell a) m -> D q a m
D q (PrettyCell a) m
q2)
perform :: forall (m :: * -> *).
MonadInherit m =>
Size -> BD q a m -> DequeOp a -> m (Size, BD q a m)
perform Size
sz (BD D q a m
q1 D q a m
q2) (Cons a
x) = do
(Size
sz, D q a m
q1) <- Size -> D q a m -> DequeOp a -> m (Size, D q a m)
forall (m :: * -> *).
MonadInherit m =>
Size -> D q a m -> DequeOp a -> m (Size, D q a m)
forall (t :: (* -> *) -> *) op (m :: * -> *).
(DataStructure t op, MonadInherit m) =>
Size -> t m -> op -> m (Size, t m)
perform Size
sz D q a m
q1 (a -> DequeOp a
forall a. a -> DequeOp a
Cons a
x)
(Size, BD q a m) -> m (Size, BD q a m)
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Size
sz, D q a m -> D q a m -> BD q a m
forall {k} (q :: * -> k -> *) a (m :: k).
D q a m -> D q a m -> BD q a m
BD D q a m
q1 D q a m
q2)
perform Size
sz (BD D q a m
q1 D q a m
q2) (Snoc a
x) = do
(Size
sz, D q a m
q2) <- Size -> D q a m -> DequeOp a -> m (Size, D q a m)
forall (m :: * -> *).
MonadInherit m =>
Size -> D q a m -> DequeOp a -> m (Size, D q a m)
forall (t :: (* -> *) -> *) op (m :: * -> *).
(DataStructure t op, MonadInherit m) =>
Size -> t m -> op -> m (Size, t m)
perform Size
sz D q a m
q2 (a -> DequeOp a
forall a. a -> DequeOp a
Snoc a
x)
(Size, BD q a m) -> m (Size, BD q a m)
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Size
sz, D q a m -> D q a m -> BD q a m
forall {k} (q :: * -> k -> *) a (m :: k).
D q a m -> D q a m -> BD q a m
BD D q a m
q1 D q a m
q2)
perform Size
sz (BD D q a m
q1 D q a m
q2) DequeOp a
Uncons = do
(Size
sz, D q a m
q1) <- Size -> D q a m -> DequeOp a -> m (Size, D q a m)
forall (m :: * -> *).
MonadInherit m =>
Size -> D q a m -> DequeOp a -> m (Size, D q a m)
forall (t :: (* -> *) -> *) op (m :: * -> *).
(DataStructure t op, MonadInherit m) =>
Size -> t m -> op -> m (Size, t m)
perform Size
sz D q a m
q1 DequeOp a
forall a. DequeOp a
Uncons
(Size, BD q a m) -> m (Size, BD q a m)
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Size
sz, D q a m -> D q a m -> BD q a m
forall {k} (q :: * -> k -> *) a (m :: k).
D q a m -> D q a m -> BD q a m
BD D q a m
q1 D q a m
q2)
perform Size
sz (BD D q a m
q1 D q a m
q2) DequeOp a
Unsnoc = do
(Size
sz, D q a m
q2) <- Size -> D q a m -> DequeOp a -> m (Size, D q a m)
forall (m :: * -> *).
MonadInherit m =>
Size -> D q a m -> DequeOp a -> m (Size, D q a m)
forall (t :: (* -> *) -> *) op (m :: * -> *).
(DataStructure t op, MonadInherit m) =>
Size -> t m -> op -> m (Size, t m)
perform Size
sz D q a m
q2 DequeOp a
forall a. DequeOp a
Unsnoc
(Size, BD q a m) -> m (Size, BD q a m)
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Size
sz, D q a m -> D q a m -> BD q a m
forall {k} (q :: * -> k -> *) a (m :: k).
D q a m -> D q a m -> BD q a m
BD D q a m
q1 D q a m
q2)
perform Size
sz (BD (D q (PrettyCell a) m
q1) (D q (PrettyCell a) m
q2)) DequeOp a
Concat = do
q (PrettyCell a) m
e <- m (q (PrettyCell a) m)
forall (m :: * -> *) a. MonadLazy m => m (q a m)
forall (q :: * -> (* -> *) -> *) (m :: * -> *) a.
(Deque q, MonadLazy m) =>
m (q a m)
empty
q (PrettyCell a) m
q <- q (PrettyCell a) m -> q (PrettyCell a) m -> m (q (PrettyCell a) m)
forall (m :: * -> *) a.
MonadInherit m =>
q a m -> q a m -> m (q a m)
forall (q :: * -> (* -> *) -> *) (m :: * -> *) a.
(Deque q, MonadInherit m) =>
q a m -> q a m -> m (q a m)
concat q (PrettyCell a) m
q1 q (PrettyCell a) m
q2
(Size, BD q a m) -> m (Size, BD q a m)
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Size
sz, D q a m -> D q a m -> BD q a m
forall {k} (q :: * -> k -> *) a (m :: k).
D q a m -> D q a m -> BD q a m
BD (q (PrettyCell a) m -> D q a m
forall {k} (q :: * -> k -> *) a (m :: k).
q (PrettyCell a) m -> D q a m
D q (PrettyCell a) m
e) (q (PrettyCell a) m -> D q a m
forall {k} (q :: * -> k -> *) a (m :: k).
q (PrettyCell a) m -> D q a m
D q (PrettyCell a) m
q))