{-# OPTIONS_GHC -w #-}
{-# LANGUAGE CPP #-}
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE TypeSynonymInstances #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE PatternGuards #-}
{-# LANGUAGE NoStrictData #-}
{-# LANGUAGE UnboxedTuples #-}
{-# LANGUAGE PartialTypeSignatures #-}
#if __GLASGOW_HASKELL__ >= 710
{-# LANGUAGE PartialTypeSignatures #-}
#endif
{-# LANGUAGE BangPatterns #-}
module Parser (parse) where

import qualified Lexer as T
import qualified Concrete as C

import Abstract (Decoration(..),Dec,defaultDec,Override(..))
import Polarity (Pol(..))
import qualified Abstract as A
import qualified Polarity as A
import Concrete (Name,patApp)
import qualified Data.Function as Happy_Prelude
import qualified Data.Bool as Happy_Prelude
import qualified Data.Function as Happy_Prelude
import qualified Data.Maybe as Happy_Prelude
import qualified Data.Int as Happy_Prelude
import qualified Data.String as Happy_Prelude
import qualified Data.Tuple as Happy_Prelude
import qualified Data.List as Happy_Prelude
import qualified Control.Monad as Happy_Prelude
import qualified Text.Show as Happy_Prelude
import qualified GHC.Num as Happy_Prelude
import qualified GHC.Err as Happy_Prelude
import qualified Data.Array as Happy_Data_Array
import qualified Data.Bits as Bits
import qualified GHC.Exts as Happy_GHC_Exts
import Control.Applicative(Applicative(..))
import Control.Monad (ap)

-- parser produced by Happy Version 2.1.5

newtype HappyAbsSyn  = HappyAbsSyn HappyAny
#if __GLASGOW_HASKELL__ >= 607
type HappyAny = Happy_GHC_Exts.Any
#else
type HappyAny = forall a . a
#endif
newtype HappyWrap5 = HappyWrap5 ([C.Declaration])
happyIn5 :: ([C.Declaration]) -> (HappyAbsSyn )
happyIn5 :: [Declaration] -> HappyAbsSyn
happyIn5 [Declaration]
x = HappyWrap5 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# ([Declaration] -> HappyWrap5
HappyWrap5 [Declaration]
x)
{-# INLINE happyIn5 #-}
happyOut5 :: (HappyAbsSyn ) -> HappyWrap5
happyOut5 :: HappyAbsSyn -> HappyWrap5
happyOut5 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap5
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut5 #-}
newtype HappyWrap6 = HappyWrap6 ([C.Declaration])
happyIn6 :: ([C.Declaration]) -> (HappyAbsSyn )
happyIn6 :: [Declaration] -> HappyAbsSyn
happyIn6 [Declaration]
x = HappyWrap6 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# ([Declaration] -> HappyWrap6
HappyWrap6 [Declaration]
x)
{-# INLINE happyIn6 #-}
happyOut6 :: (HappyAbsSyn ) -> HappyWrap6
happyOut6 :: HappyAbsSyn -> HappyWrap6
happyOut6 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap6
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut6 #-}
newtype HappyWrap7 = HappyWrap7 (C.Declaration)
happyIn7 :: (C.Declaration) -> (HappyAbsSyn )
happyIn7 :: Declaration -> HappyAbsSyn
happyIn7 Declaration
x = HappyWrap7 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Declaration -> HappyWrap7
HappyWrap7 Declaration
x)
{-# INLINE happyIn7 #-}
happyOut7 :: (HappyAbsSyn ) -> HappyWrap7
happyOut7 :: HappyAbsSyn -> HappyWrap7
happyOut7 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap7
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut7 #-}
newtype HappyWrap8 = HappyWrap8 (C.Declaration)
happyIn8 :: (C.Declaration) -> (HappyAbsSyn )
happyIn8 :: Declaration -> HappyAbsSyn
happyIn8 Declaration
x = HappyWrap8 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Declaration -> HappyWrap8
HappyWrap8 Declaration
x)
{-# INLINE happyIn8 #-}
happyOut8 :: (HappyAbsSyn ) -> HappyWrap8
happyOut8 :: HappyAbsSyn -> HappyWrap8
happyOut8 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap8
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut8 #-}
newtype HappyWrap9 = HappyWrap9 (C.Declaration)
happyIn9 :: (C.Declaration) -> (HappyAbsSyn )
happyIn9 :: Declaration -> HappyAbsSyn
happyIn9 Declaration
x = HappyWrap9 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Declaration -> HappyWrap9
HappyWrap9 Declaration
x)
{-# INLINE happyIn9 #-}
happyOut9 :: (HappyAbsSyn ) -> HappyWrap9
happyOut9 :: HappyAbsSyn -> HappyWrap9
happyOut9 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap9
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut9 #-}
newtype HappyWrap10 = HappyWrap10 (C.Declaration)
happyIn10 :: (C.Declaration) -> (HappyAbsSyn )
happyIn10 :: Declaration -> HappyAbsSyn
happyIn10 Declaration
x = HappyWrap10 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Declaration -> HappyWrap10
HappyWrap10 Declaration
x)
{-# INLINE happyIn10 #-}
happyOut10 :: (HappyAbsSyn ) -> HappyWrap10
happyOut10 :: HappyAbsSyn -> HappyWrap10
happyOut10 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap10
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut10 #-}
newtype HappyWrap11 = HappyWrap11 (C.Declaration)
happyIn11 :: (C.Declaration) -> (HappyAbsSyn )
happyIn11 :: Declaration -> HappyAbsSyn
happyIn11 Declaration
x = HappyWrap11 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Declaration -> HappyWrap11
HappyWrap11 Declaration
x)
{-# INLINE happyIn11 #-}
happyOut11 :: (HappyAbsSyn ) -> HappyWrap11
happyOut11 :: HappyAbsSyn -> HappyWrap11
happyOut11 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap11
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut11 #-}
newtype HappyWrap12 = HappyWrap12 (C.Declaration)
happyIn12 :: (C.Declaration) -> (HappyAbsSyn )
happyIn12 :: Declaration -> HappyAbsSyn
happyIn12 Declaration
x = HappyWrap12 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Declaration -> HappyWrap12
HappyWrap12 Declaration
x)
{-# INLINE happyIn12 #-}
happyOut12 :: (HappyAbsSyn ) -> HappyWrap12
happyOut12 :: HappyAbsSyn -> HappyWrap12
happyOut12 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap12
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut12 #-}
newtype HappyWrap13 = HappyWrap13 ((C.Name, C.Telescope, C.Type, [C.Constructor], [C.Name]))
happyIn13 :: ((C.Name, C.Telescope, C.Type, [C.Constructor], [C.Name])) -> (HappyAbsSyn )
happyIn13 :: (Name, Telescope, Type, [Constructor], [Name]) -> HappyAbsSyn
happyIn13 (Name, Telescope, Type, [Constructor], [Name])
x = HappyWrap13 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# ((Name, Telescope, Type, [Constructor], [Name]) -> HappyWrap13
HappyWrap13 (Name, Telescope, Type, [Constructor], [Name])
x)
{-# INLINE happyIn13 #-}
happyOut13 :: (HappyAbsSyn ) -> HappyWrap13
happyOut13 :: HappyAbsSyn -> HappyWrap13
happyOut13 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap13
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut13 #-}
newtype HappyWrap14 = HappyWrap14 ((C.Name, C.Telescope, C.Type, C.Constructor, [C.Name]))
happyIn14 :: ((C.Name, C.Telescope, C.Type, C.Constructor, [C.Name])) -> (HappyAbsSyn )
happyIn14 :: (Name, Telescope, Type, Constructor, [Name]) -> HappyAbsSyn
happyIn14 (Name, Telescope, Type, Constructor, [Name])
x = HappyWrap14 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# ((Name, Telescope, Type, Constructor, [Name]) -> HappyWrap14
HappyWrap14 (Name, Telescope, Type, Constructor, [Name])
x)
{-# INLINE happyIn14 #-}
happyOut14 :: (HappyAbsSyn ) -> HappyWrap14
happyOut14 :: HappyAbsSyn -> HappyWrap14
happyOut14 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap14
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut14 #-}
newtype HappyWrap15 = HappyWrap15 (C.Declaration)
happyIn15 :: (C.Declaration) -> (HappyAbsSyn )
happyIn15 :: Declaration -> HappyAbsSyn
happyIn15 Declaration
x = HappyWrap15 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Declaration -> HappyWrap15
HappyWrap15 Declaration
x)
{-# INLINE happyIn15 #-}
happyOut15 :: (HappyAbsSyn ) -> HappyWrap15
happyOut15 :: HappyAbsSyn -> HappyWrap15
happyOut15 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap15
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut15 #-}
newtype HappyWrap16 = HappyWrap16 (C.Declaration)
happyIn16 :: (C.Declaration) -> (HappyAbsSyn )
happyIn16 :: Declaration -> HappyAbsSyn
happyIn16 Declaration
x = HappyWrap16 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Declaration -> HappyWrap16
HappyWrap16 Declaration
x)
{-# INLINE happyIn16 #-}
happyOut16 :: (HappyAbsSyn ) -> HappyWrap16
happyOut16 :: HappyAbsSyn -> HappyWrap16
happyOut16 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap16
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut16 #-}
newtype HappyWrap17 = HappyWrap17 (C.Declaration)
happyIn17 :: (C.Declaration) -> (HappyAbsSyn )
happyIn17 :: Declaration -> HappyAbsSyn
happyIn17 Declaration
x = HappyWrap17 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Declaration -> HappyWrap17
HappyWrap17 Declaration
x)
{-# INLINE happyIn17 #-}
happyOut17 :: (HappyAbsSyn ) -> HappyWrap17
happyOut17 :: HappyAbsSyn -> HappyWrap17
happyOut17 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap17
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut17 #-}
newtype HappyWrap18 = HappyWrap18 (C.Declaration)
happyIn18 :: (C.Declaration) -> (HappyAbsSyn )
happyIn18 :: Declaration -> HappyAbsSyn
happyIn18 Declaration
x = HappyWrap18 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Declaration -> HappyWrap18
HappyWrap18 Declaration
x)
{-# INLINE happyIn18 #-}
happyOut18 :: (HappyAbsSyn ) -> HappyWrap18
happyOut18 :: HappyAbsSyn -> HappyWrap18
happyOut18 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap18
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut18 #-}
newtype HappyWrap19 = HappyWrap19 (C.LetDef)
happyIn19 :: (C.LetDef) -> (HappyAbsSyn )
happyIn19 :: LetDef -> HappyAbsSyn
happyIn19 LetDef
x = HappyWrap19 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (LetDef -> HappyWrap19
HappyWrap19 LetDef
x)
{-# INLINE happyIn19 #-}
happyOut19 :: (HappyAbsSyn ) -> HappyWrap19
happyOut19 :: HappyAbsSyn -> HappyWrap19
happyOut19 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap19
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut19 #-}
newtype HappyWrap20 = HappyWrap20 (Bool)
happyIn20 :: (Bool) -> (HappyAbsSyn )
happyIn20 :: Bool -> HappyAbsSyn
happyIn20 Bool
x = HappyWrap20 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Bool -> HappyWrap20
HappyWrap20 Bool
x)
{-# INLINE happyIn20 #-}
happyOut20 :: (HappyAbsSyn ) -> HappyWrap20
happyOut20 :: HappyAbsSyn -> HappyWrap20
happyOut20 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap20
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut20 #-}
newtype HappyWrap21 = HappyWrap21 (Maybe C.Type)
happyIn21 :: (Maybe C.Type) -> (HappyAbsSyn )
happyIn21 :: Maybe Type -> HappyAbsSyn
happyIn21 Maybe Type
x = HappyWrap21 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Maybe Type -> HappyWrap21
HappyWrap21 Maybe Type
x)
{-# INLINE happyIn21 #-}
happyOut21 :: (HappyAbsSyn ) -> HappyWrap21
happyOut21 :: HappyAbsSyn -> HappyWrap21
happyOut21 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap21
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut21 #-}
newtype HappyWrap22 = HappyWrap22 (C.Declaration)
happyIn22 :: (C.Declaration) -> (HappyAbsSyn )
happyIn22 :: Declaration -> HappyAbsSyn
happyIn22 Declaration
x = HappyWrap22 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Declaration -> HappyWrap22
HappyWrap22 Declaration
x)
{-# INLINE happyIn22 #-}
happyOut22 :: (HappyAbsSyn ) -> HappyWrap22
happyOut22 :: HappyAbsSyn -> HappyWrap22
happyOut22 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap22
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut22 #-}
newtype HappyWrap23 = HappyWrap23 ([Name])
happyIn23 :: ([Name]) -> (HappyAbsSyn )
happyIn23 :: [Name] -> HappyAbsSyn
happyIn23 [Name]
x = HappyWrap23 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# ([Name] -> HappyWrap23
HappyWrap23 [Name]
x)
{-# INLINE happyIn23 #-}
happyOut23 :: (HappyAbsSyn ) -> HappyWrap23
happyOut23 :: HappyAbsSyn -> HappyWrap23
happyOut23 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap23
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut23 #-}
newtype HappyWrap24 = HappyWrap24 (Name)
happyIn24 :: (Name) -> (HappyAbsSyn )
happyIn24 :: Name -> HappyAbsSyn
happyIn24 Name
x = HappyWrap24 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Name -> HappyWrap24
HappyWrap24 Name
x)
{-# INLINE happyIn24 #-}
happyOut24 :: (HappyAbsSyn ) -> HappyWrap24
happyOut24 :: HappyAbsSyn -> HappyWrap24
happyOut24 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap24
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut24 #-}
newtype HappyWrap25 = HappyWrap25 ([Name])
happyIn25 :: ([Name]) -> (HappyAbsSyn )
happyIn25 :: [Name] -> HappyAbsSyn
happyIn25 [Name]
x = HappyWrap25 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# ([Name] -> HappyWrap25
HappyWrap25 [Name]
x)
{-# INLINE happyIn25 #-}
happyOut25 :: (HappyAbsSyn ) -> HappyWrap25
happyOut25 :: HappyAbsSyn -> HappyWrap25
happyOut25 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap25
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut25 #-}
newtype HappyWrap26 = HappyWrap26 ([Name])
happyIn26 :: ([Name]) -> (HappyAbsSyn )
happyIn26 :: [Name] -> HappyAbsSyn
happyIn26 [Name]
x = HappyWrap26 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# ([Name] -> HappyWrap26
HappyWrap26 [Name]
x)
{-# INLINE happyIn26 #-}
happyOut26 :: (HappyAbsSyn ) -> HappyWrap26
happyOut26 :: HappyAbsSyn -> HappyWrap26
happyOut26 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap26
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut26 #-}
newtype HappyWrap27 = HappyWrap27 (Pol)
happyIn27 :: (Pol) -> (HappyAbsSyn )
happyIn27 :: Pol -> HappyAbsSyn
happyIn27 Pol
x = HappyWrap27 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Pol -> HappyWrap27
HappyWrap27 Pol
x)
{-# INLINE happyIn27 #-}
happyOut27 :: (HappyAbsSyn ) -> HappyWrap27
happyOut27 :: HappyAbsSyn -> HappyWrap27
happyOut27 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap27
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut27 #-}
newtype HappyWrap28 = HappyWrap28 (A.Measure C.Expr)
happyIn28 :: (A.Measure C.Expr) -> (HappyAbsSyn )
happyIn28 :: Measure Type -> HappyAbsSyn
happyIn28 Measure Type
x = HappyWrap28 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Measure Type -> HappyWrap28
HappyWrap28 Measure Type
x)
{-# INLINE happyIn28 #-}
happyOut28 :: (HappyAbsSyn ) -> HappyWrap28
happyOut28 :: HappyAbsSyn -> HappyWrap28
happyOut28 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap28
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut28 #-}
newtype HappyWrap29 = HappyWrap29 ([C.Expr])
happyIn29 :: ([C.Expr]) -> (HappyAbsSyn )
happyIn29 :: [Type] -> HappyAbsSyn
happyIn29 [Type]
x = HappyWrap29 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# ([Type] -> HappyWrap29
HappyWrap29 [Type]
x)
{-# INLINE happyIn29 #-}
happyOut29 :: (HappyAbsSyn ) -> HappyWrap29
happyOut29 :: HappyAbsSyn -> HappyWrap29
happyOut29 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap29
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut29 #-}
newtype HappyWrap30 = HappyWrap30 (A.Bound C.Expr)
happyIn30 :: (A.Bound C.Expr) -> (HappyAbsSyn )
happyIn30 :: Bound Type -> HappyAbsSyn
happyIn30 Bound Type
x = HappyWrap30 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Bound Type -> HappyWrap30
HappyWrap30 Bound Type
x)
{-# INLINE happyIn30 #-}
happyOut30 :: (HappyAbsSyn ) -> HappyWrap30
happyOut30 :: HappyAbsSyn -> HappyWrap30
happyOut30 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap30
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut30 #-}
newtype HappyWrap31 = HappyWrap31 ([Name])
happyIn31 :: ([Name]) -> (HappyAbsSyn )
happyIn31 :: [Name] -> HappyAbsSyn
happyIn31 [Name]
x = HappyWrap31 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# ([Name] -> HappyWrap31
HappyWrap31 [Name]
x)
{-# INLINE happyIn31 #-}
happyOut31 :: (HappyAbsSyn ) -> HappyWrap31
happyOut31 :: HappyAbsSyn -> HappyWrap31
happyOut31 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap31
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut31 #-}
newtype HappyWrap32 = HappyWrap32 (C.Telescope)
happyIn32 :: (C.Telescope) -> (HappyAbsSyn )
happyIn32 :: Telescope -> HappyAbsSyn
happyIn32 Telescope
x = HappyWrap32 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Telescope -> HappyWrap32
HappyWrap32 Telescope
x)
{-# INLINE happyIn32 #-}
happyOut32 :: (HappyAbsSyn ) -> HappyWrap32
happyOut32 :: HappyAbsSyn -> HappyWrap32
happyOut32 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap32
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut32 #-}
newtype HappyWrap33 = HappyWrap33 (C.TBind)
happyIn33 :: (C.TBind) -> (HappyAbsSyn )
happyIn33 :: TBind -> HappyAbsSyn
happyIn33 TBind
x = HappyWrap33 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (TBind -> HappyWrap33
HappyWrap33 TBind
x)
{-# INLINE happyIn33 #-}
happyOut33 :: (HappyAbsSyn ) -> HappyWrap33
happyOut33 :: HappyAbsSyn -> HappyWrap33
happyOut33 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap33
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut33 #-}
newtype HappyWrap34 = HappyWrap34 (C.TBind)
happyIn34 :: (C.TBind) -> (HappyAbsSyn )
happyIn34 :: TBind -> HappyAbsSyn
happyIn34 TBind
x = HappyWrap34 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (TBind -> HappyWrap34
HappyWrap34 TBind
x)
{-# INLINE happyIn34 #-}
happyOut34 :: (HappyAbsSyn ) -> HappyWrap34
happyOut34 :: HappyAbsSyn -> HappyWrap34
happyOut34 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap34
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut34 #-}
newtype HappyWrap35 = HappyWrap35 (C.TBind)
happyIn35 :: (C.TBind) -> (HappyAbsSyn )
happyIn35 :: TBind -> HappyAbsSyn
happyIn35 TBind
x = HappyWrap35 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (TBind -> HappyWrap35
HappyWrap35 TBind
x)
{-# INLINE happyIn35 #-}
happyOut35 :: (HappyAbsSyn ) -> HappyWrap35
happyOut35 :: HappyAbsSyn -> HappyWrap35
happyOut35 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap35
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut35 #-}
newtype HappyWrap36 = HappyWrap36 ((Dec, C.Name))
happyIn36 :: ((Dec, C.Name)) -> (HappyAbsSyn )
happyIn36 :: (Dec, Name) -> HappyAbsSyn
happyIn36 (Dec, Name)
x = HappyWrap36 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# ((Dec, Name) -> HappyWrap36
HappyWrap36 (Dec, Name)
x)
{-# INLINE happyIn36 #-}
happyOut36 :: (HappyAbsSyn ) -> HappyWrap36
happyOut36 :: HappyAbsSyn -> HappyWrap36
happyOut36 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap36
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut36 #-}
newtype HappyWrap37 = HappyWrap37 (C.LetDef)
happyIn37 :: (C.LetDef) -> (HappyAbsSyn )
happyIn37 :: LetDef -> HappyAbsSyn
happyIn37 LetDef
x = HappyWrap37 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (LetDef -> HappyWrap37
HappyWrap37 LetDef
x)
{-# INLINE happyIn37 #-}
happyOut37 :: (HappyAbsSyn ) -> HappyWrap37
happyOut37 :: HappyAbsSyn -> HappyWrap37
happyOut37 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap37
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut37 #-}
newtype HappyWrap38 = HappyWrap38 (C.Telescope)
happyIn38 :: (C.Telescope) -> (HappyAbsSyn )
happyIn38 :: Telescope -> HappyAbsSyn
happyIn38 Telescope
x = HappyWrap38 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Telescope -> HappyWrap38
HappyWrap38 Telescope
x)
{-# INLINE happyIn38 #-}
happyOut38 :: (HappyAbsSyn ) -> HappyWrap38
happyOut38 :: HappyAbsSyn -> HappyWrap38
happyOut38 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap38
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut38 #-}
newtype HappyWrap39 = HappyWrap39 (C.Expr)
happyIn39 :: (C.Expr) -> (HappyAbsSyn )
happyIn39 :: Type -> HappyAbsSyn
happyIn39 Type
x = HappyWrap39 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Type -> HappyWrap39
HappyWrap39 Type
x)
{-# INLINE happyIn39 #-}
happyOut39 :: (HappyAbsSyn ) -> HappyWrap39
happyOut39 :: HappyAbsSyn -> HappyWrap39
happyOut39 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap39
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut39 #-}
newtype HappyWrap40 = HappyWrap40 ([C.Expr])
happyIn40 :: ([C.Expr]) -> (HappyAbsSyn )
happyIn40 :: [Type] -> HappyAbsSyn
happyIn40 [Type]
x = HappyWrap40 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# ([Type] -> HappyWrap40
HappyWrap40 [Type]
x)
{-# INLINE happyIn40 #-}
happyOut40 :: (HappyAbsSyn ) -> HappyWrap40
happyOut40 :: HappyAbsSyn -> HappyWrap40
happyOut40 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap40
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut40 #-}
newtype HappyWrap41 = HappyWrap41 (C.Expr)
happyIn41 :: (C.Expr) -> (HappyAbsSyn )
happyIn41 :: Type -> HappyAbsSyn
happyIn41 Type
x = HappyWrap41 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Type -> HappyWrap41
HappyWrap41 Type
x)
{-# INLINE happyIn41 #-}
happyOut41 :: (HappyAbsSyn ) -> HappyWrap41
happyOut41 :: HappyAbsSyn -> HappyWrap41
happyOut41 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap41
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut41 #-}
newtype HappyWrap42 = HappyWrap42 (C.Expr)
happyIn42 :: (C.Expr) -> (HappyAbsSyn )
happyIn42 :: Type -> HappyAbsSyn
happyIn42 Type
x = HappyWrap42 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Type -> HappyWrap42
HappyWrap42 Type
x)
{-# INLINE happyIn42 #-}
happyOut42 :: (HappyAbsSyn ) -> HappyWrap42
happyOut42 :: HappyAbsSyn -> HappyWrap42
happyOut42 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap42
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut42 #-}
newtype HappyWrap43 = HappyWrap43 (C.TBind)
happyIn43 :: (C.TBind) -> (HappyAbsSyn )
happyIn43 :: TBind -> HappyAbsSyn
happyIn43 TBind
x = HappyWrap43 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (TBind -> HappyWrap43
HappyWrap43 TBind
x)
{-# INLINE happyIn43 #-}
happyOut43 :: (HappyAbsSyn ) -> HappyWrap43
happyOut43 :: HappyAbsSyn -> HappyWrap43
happyOut43 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap43
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut43 #-}
newtype HappyWrap44 = HappyWrap44 (C.Expr)
happyIn44 :: (C.Expr) -> (HappyAbsSyn )
happyIn44 :: Type -> HappyAbsSyn
happyIn44 Type
x = HappyWrap44 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Type -> HappyWrap44
HappyWrap44 Type
x)
{-# INLINE happyIn44 #-}
happyOut44 :: (HappyAbsSyn ) -> HappyWrap44
happyOut44 :: HappyAbsSyn -> HappyWrap44
happyOut44 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap44
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut44 #-}
newtype HappyWrap45 = HappyWrap45 ([C.Expr])
happyIn45 :: ([C.Expr]) -> (HappyAbsSyn )
happyIn45 :: [Type] -> HappyAbsSyn
happyIn45 [Type]
x = HappyWrap45 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# ([Type] -> HappyWrap45
HappyWrap45 [Type]
x)
{-# INLINE happyIn45 #-}
happyOut45 :: (HappyAbsSyn ) -> HappyWrap45
happyOut45 :: HappyAbsSyn -> HappyWrap45
happyOut45 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap45
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut45 #-}
newtype HappyWrap46 = HappyWrap46 (C.Expr)
happyIn46 :: (C.Expr) -> (HappyAbsSyn )
happyIn46 :: Type -> HappyAbsSyn
happyIn46 Type
x = HappyWrap46 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Type -> HappyWrap46
HappyWrap46 Type
x)
{-# INLINE happyIn46 #-}
happyOut46 :: (HappyAbsSyn ) -> HappyWrap46
happyOut46 :: HappyAbsSyn -> HappyWrap46
happyOut46 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap46
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut46 #-}
newtype HappyWrap47 = HappyWrap47 (C.QName)
happyIn47 :: (C.QName) -> (HappyAbsSyn )
happyIn47 :: QName -> HappyAbsSyn
happyIn47 QName
x = HappyWrap47 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (QName -> HappyWrap47
HappyWrap47 QName
x)
{-# INLINE happyIn47 #-}
happyOut47 :: (HappyAbsSyn ) -> HappyWrap47
happyOut47 :: HappyAbsSyn -> HappyWrap47
happyOut47 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap47
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut47 #-}
newtype HappyWrap48 = HappyWrap48 ([([Name],C.Expr)])
happyIn48 :: ([([Name],C.Expr)]) -> (HappyAbsSyn )
happyIn48 :: [([Name], Type)] -> HappyAbsSyn
happyIn48 [([Name], Type)]
x = HappyWrap48 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# ([([Name], Type)] -> HappyWrap48
HappyWrap48 [([Name], Type)]
x)
{-# INLINE happyIn48 #-}
happyOut48 :: (HappyAbsSyn ) -> HappyWrap48
happyOut48 :: HappyAbsSyn -> HappyWrap48
happyOut48 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap48
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut48 #-}
newtype HappyWrap49 = HappyWrap49 (([Name],C.Expr))
happyIn49 :: (([Name],C.Expr)) -> (HappyAbsSyn )
happyIn49 :: ([Name], Type) -> HappyAbsSyn
happyIn49 ([Name], Type)
x = HappyWrap49 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (([Name], Type) -> HappyWrap49
HappyWrap49 ([Name], Type)
x)
{-# INLINE happyIn49 #-}
happyOut49 :: (HappyAbsSyn ) -> HappyWrap49
happyOut49 :: HappyAbsSyn -> HappyWrap49
happyOut49 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap49
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut49 #-}
newtype HappyWrap50 = HappyWrap50 (C.TypeSig)
happyIn50 :: (C.TypeSig) -> (HappyAbsSyn )
happyIn50 :: TypeSig -> HappyAbsSyn
happyIn50 TypeSig
x = HappyWrap50 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (TypeSig -> HappyWrap50
HappyWrap50 TypeSig
x)
{-# INLINE happyIn50 #-}
happyOut50 :: (HappyAbsSyn ) -> HappyWrap50
happyOut50 :: HappyAbsSyn -> HappyWrap50
happyOut50 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap50
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut50 #-}
newtype HappyWrap51 = HappyWrap51 (C.Constructor)
happyIn51 :: (C.Constructor) -> (HappyAbsSyn )
happyIn51 :: Constructor -> HappyAbsSyn
happyIn51 Constructor
x = HappyWrap51 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Constructor -> HappyWrap51
HappyWrap51 Constructor
x)
{-# INLINE happyIn51 #-}
happyOut51 :: (HappyAbsSyn ) -> HappyWrap51
happyOut51 :: HappyAbsSyn -> HappyWrap51
happyOut51 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap51
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut51 #-}
newtype HappyWrap52 = HappyWrap52 ([C.Constructor ])
happyIn52 :: ([C.Constructor ]) -> (HappyAbsSyn )
happyIn52 :: [Constructor] -> HappyAbsSyn
happyIn52 [Constructor]
x = HappyWrap52 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# ([Constructor] -> HappyWrap52
HappyWrap52 [Constructor]
x)
{-# INLINE happyIn52 #-}
happyOut52 :: (HappyAbsSyn ) -> HappyWrap52
happyOut52 :: HappyAbsSyn -> HappyWrap52
happyOut52 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap52
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut52 #-}
newtype HappyWrap53 = HappyWrap53 ([C.Clause])
happyIn53 :: ([C.Clause]) -> (HappyAbsSyn )
happyIn53 :: [Clause] -> HappyAbsSyn
happyIn53 [Clause]
x = HappyWrap53 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# ([Clause] -> HappyWrap53
HappyWrap53 [Clause]
x)
{-# INLINE happyIn53 #-}
happyOut53 :: (HappyAbsSyn ) -> HappyWrap53
happyOut53 :: HappyAbsSyn -> HappyWrap53
happyOut53 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap53
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut53 #-}
newtype HappyWrap54 = HappyWrap54 (C.Clause)
happyIn54 :: (C.Clause) -> (HappyAbsSyn )
happyIn54 :: Clause -> HappyAbsSyn
happyIn54 Clause
x = HappyWrap54 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Clause -> HappyWrap54
HappyWrap54 Clause
x)
{-# INLINE happyIn54 #-}
happyOut54 :: (HappyAbsSyn ) -> HappyWrap54
happyOut54 :: HappyAbsSyn -> HappyWrap54
happyOut54 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap54
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut54 #-}
newtype HappyWrap55 = HappyWrap55 ([C.Pattern])
happyIn55 :: ([C.Pattern]) -> (HappyAbsSyn )
happyIn55 :: [Pattern] -> HappyAbsSyn
happyIn55 [Pattern]
x = HappyWrap55 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# ([Pattern] -> HappyWrap55
HappyWrap55 [Pattern]
x)
{-# INLINE happyIn55 #-}
happyOut55 :: (HappyAbsSyn ) -> HappyWrap55
happyOut55 :: HappyAbsSyn -> HappyWrap55
happyOut55 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap55
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut55 #-}
newtype HappyWrap56 = HappyWrap56 ([C.Pattern])
happyIn56 :: ([C.Pattern]) -> (HappyAbsSyn )
happyIn56 :: [Pattern] -> HappyAbsSyn
happyIn56 [Pattern]
x = HappyWrap56 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# ([Pattern] -> HappyWrap56
HappyWrap56 [Pattern]
x)
{-# INLINE happyIn56 #-}
happyOut56 :: (HappyAbsSyn ) -> HappyWrap56
happyOut56 :: HappyAbsSyn -> HappyWrap56
happyOut56 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap56
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut56 #-}
newtype HappyWrap57 = HappyWrap57 (C.Pattern)
happyIn57 :: (C.Pattern) -> (HappyAbsSyn )
happyIn57 :: Pattern -> HappyAbsSyn
happyIn57 Pattern
x = HappyWrap57 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Pattern -> HappyWrap57
HappyWrap57 Pattern
x)
{-# INLINE happyIn57 #-}
happyOut57 :: (HappyAbsSyn ) -> HappyWrap57
happyOut57 :: HappyAbsSyn -> HappyWrap57
happyOut57 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap57
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut57 #-}
newtype HappyWrap58 = HappyWrap58 (C.Pattern)
happyIn58 :: (C.Pattern) -> (HappyAbsSyn )
happyIn58 :: Pattern -> HappyAbsSyn
happyIn58 Pattern
x = HappyWrap58 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Pattern -> HappyWrap58
HappyWrap58 Pattern
x)
{-# INLINE happyIn58 #-}
happyOut58 :: (HappyAbsSyn ) -> HappyWrap58
happyOut58 :: HappyAbsSyn -> HappyWrap58
happyOut58 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap58
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut58 #-}
newtype HappyWrap59 = HappyWrap59 (C.Pattern)
happyIn59 :: (C.Pattern) -> (HappyAbsSyn )
happyIn59 :: Pattern -> HappyAbsSyn
happyIn59 Pattern
x = HappyWrap59 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Pattern -> HappyWrap59
HappyWrap59 Pattern
x)
{-# INLINE happyIn59 #-}
happyOut59 :: (HappyAbsSyn ) -> HappyWrap59
happyOut59 :: HappyAbsSyn -> HappyWrap59
happyOut59 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap59
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut59 #-}
newtype HappyWrap60 = HappyWrap60 (C.Pattern)
happyIn60 :: (C.Pattern) -> (HappyAbsSyn )
happyIn60 :: Pattern -> HappyAbsSyn
happyIn60 Pattern
x = HappyWrap60 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Pattern -> HappyWrap60
HappyWrap60 Pattern
x)
{-# INLINE happyIn60 #-}
happyOut60 :: (HappyAbsSyn ) -> HappyWrap60
happyOut60 :: HappyAbsSyn -> HappyWrap60
happyOut60 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap60
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut60 #-}
newtype HappyWrap61 = HappyWrap61 (C.Pattern)
happyIn61 :: (C.Pattern) -> (HappyAbsSyn )
happyIn61 :: Pattern -> HappyAbsSyn
happyIn61 Pattern
x = HappyWrap61 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Pattern -> HappyWrap61
HappyWrap61 Pattern
x)
{-# INLINE happyIn61 #-}
happyOut61 :: (HappyAbsSyn ) -> HappyWrap61
happyOut61 :: HappyAbsSyn -> HappyWrap61
happyOut61 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap61
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut61 #-}
newtype HappyWrap62 = HappyWrap62 ([C.Clause])
happyIn62 :: ([C.Clause]) -> (HappyAbsSyn )
happyIn62 :: [Clause] -> HappyAbsSyn
happyIn62 [Clause]
x = HappyWrap62 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# ([Clause] -> HappyWrap62
HappyWrap62 [Clause]
x)
{-# INLINE happyIn62 #-}
happyOut62 :: (HappyAbsSyn ) -> HappyWrap62
happyOut62 :: HappyAbsSyn -> HappyWrap62
happyOut62 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap62
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut62 #-}
newtype HappyWrap63 = HappyWrap63 ([C.Clause ])
happyIn63 :: ([C.Clause ]) -> (HappyAbsSyn )
happyIn63 :: [Clause] -> HappyAbsSyn
happyIn63 [Clause]
x = HappyWrap63 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# ([Clause] -> HappyWrap63
HappyWrap63 [Clause]
x)
{-# INLINE happyIn63 #-}
happyOut63 :: (HappyAbsSyn ) -> HappyWrap63
happyOut63 :: HappyAbsSyn -> HappyWrap63
happyOut63 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap63
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut63 #-}
newtype HappyWrap64 = HappyWrap64 (C.TBind)
happyIn64 :: (C.TBind) -> (HappyAbsSyn )
happyIn64 :: TBind -> HappyAbsSyn
happyIn64 TBind
x = HappyWrap64 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (TBind -> HappyWrap64
HappyWrap64 TBind
x)
{-# INLINE happyIn64 #-}
happyOut64 :: (HappyAbsSyn ) -> HappyWrap64
happyOut64 :: HappyAbsSyn -> HappyWrap64
happyOut64 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap64
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut64 #-}
newtype HappyWrap65 = HappyWrap65 (C.Telescope)
happyIn65 :: (C.Telescope) -> (HappyAbsSyn )
happyIn65 :: Telescope -> HappyAbsSyn
happyIn65 Telescope
x = HappyWrap65 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Telescope -> HappyWrap65
HappyWrap65 Telescope
x)
{-# INLINE happyIn65 #-}
happyOut65 :: (HappyAbsSyn ) -> HappyWrap65
happyOut65 :: HappyAbsSyn -> HappyWrap65
happyOut65 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap65
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut65 #-}
happyInTok :: (T.Token) -> (HappyAbsSyn )
happyInTok :: Token -> HappyAbsSyn
happyInTok Token
x = Token -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# Token
x
{-# INLINE happyInTok #-}
happyOutTok :: (HappyAbsSyn ) -> (T.Token)
happyOutTok :: HappyAbsSyn -> Token
happyOutTok HappyAbsSyn
x = HappyAbsSyn -> Token
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOutTok #-}


{-# NOINLINE happyTokenStrings #-}
happyTokenStrings :: [String]
happyTokenStrings = [String
"id",String
"qualid",String
"number",String
"data",String
"codata",String
"record",String
"sized",String
"fields",String
"mutual",String
"fun",String
"cofun",String
"pattern",String
"case",String
"def",String
"let",String
"in",String
"eval",String
"fail",String
"check",String
"trustme",String
"impredicative",String
"type",String
"set",String
"coset",String
"size",String
"infty",String
"succ",String
"max",String
"'<|'",String
"'|>'",String
"'<'",String
"'>'",String
"'{'",String
"'}'",String
"'['",String
"']'",String
"'('",String
"')'",String
"'|'",String
"','",String
"';'",String
"':'",String
"'.'",String
"'->'",String
"'<='",String
"'='",String
"'++'",String
"'+'",String
"'-'",String
"'/'",String
"'*'",String
"'^'",String
"'&'",String
"'\\\\'",String
"'_'",String
"%eof"]

happyActOffsets :: HappyAddr
happyActOffsets :: HappyAddr
happyActOffsets = Addr# -> HappyAddr
HappyA# Addr#
"\x00\x00\x00\x00\x00\x00\x00\x00\xfc\x01\x00\x00\xcf\xff\xff\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x37\x00\x00\x00\x00\x00\x00\x00\x0b\x00\x00\x00\x0b\x00\x00\x00\x0b\x00\x00\x00\x05\x02\x00\x00\x72\x00\x00\x00\xb9\x00\x00\x00\xb9\x00\x00\x00\xb9\x00\x00\x00\x00\x00\x00\x00\xee\x02\x00\x00\x00\x03\x00\x00\x12\x03\x00\x00\x24\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xb9\x00\x00\x00\xa7\x00\x00\x00\x00\x00\x00\x00\x9c\x00\x00\x00\xfe\x00\x00\x00\x02\x01\x00\x00\x00\x00\x00\x00\x32\x01\x00\x00\x32\x01\x00\x00\x00\x00\x00\x00\x78\x08\x00\x00\x00\x00\x00\x00\x78\x08\x00\x00\x00\x00\x00\x00\x69\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x32\x01\x00\x00\x71\x08\x00\x00\x32\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xcf\x00\x00\x00\x78\x08\x00\x00\x46\x00\x00\x00\x38\x01\x00\x00\x14\x00\x00\x00\x5c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x94\x02\x00\x00\x38\x01\x00\x00\x38\x01\x00\x00\xbf\x00\x00\x00\x8c\x01\x00\x00\x00\x00\x00\x00\xa6\x02\x00\x00\xb8\x02\x00\x00\xca\x02\x00\x00\xdc\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\xff\x22\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x2c\x01\x00\x00\x56\x00\x00\x00\x4d\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x39\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x8c\x01\x00\x00\x00\x00\x00\x00\xbf\x00\x00\x00\x88\x00\x00\x00\xb2\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe6\x00\x00\x00\x49\x08\x00\x00\x2f\x01\x00\x00\x00\x00\x00\x00\x5d\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x46\x01\x00\x00\x00\x00\x00\x00\x56\x01\x00\x00\x4f\x01\x00\x00\xac\x00\x00\x00\x34\x01\x00\x00\x00\x00\x00\x00\x61\x01\x00\x00\xbf\x00\x00\x00\xbc\x01\x00\x00\xdf\x01\x00\x00\xdf\x01\x00\x00\xdf\x01\x00\x00\x87\x01\x00\x00\xbf\x00\x00\x00\xbf\x00\x00\x00\xbf\x00\x00\x00\x87\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x01\x00\x00\x89\x01\x00\x00\x8b\x01\x00\x00\x00\x00\x00\x00\xb5\x01\x00\x00\xbf\x00\x00\x00\x97\x01\x00\x00\xb9\x01\x00\x00\xc3\x01\x00\x00\xc4\x01\x00\x00\xdb\x01\x00\x00\xbf\x00\x00\x00\x00\x00\x00\x00\xdb\x01\x00\x00\xcd\x01\x00\x00\xd2\x01\x00\x00\x71\x08\x00\x00\xe8\x01\x00\x00\x71\x08\x00\x00\xfb\x01\x00\x00\xbf\x00\x00\x00\x00\x00\x00\x00\x6e\x00\x00\x00\xf2\x01\x00\x00\x00\x00\x00\x00\xed\x01\x00\x00\xa5\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\xf7\x01\x00\x00\xbf\x00\x00\x00\x00\x00\x00\x00\xbf\x00\x00\x00\x00\x00\x00\x00\x04\x02\x00\x00\x0f\x02\x00\x00\x71\x08\x00\x00\x00\x00\x00\x00\x71\x01\x00\x00\xbf\x00\x00\x00\x07\x02\x00\x00\xbf\x00\x00\x00\x3a\x02\x00\x00\x1b\x02\x00\x00\x27\x02\x00\x00\x00\x00\x00\x00\x49\x02\x00\x00\x00\x00\x00\x00\x28\x02\x00\x00\x59\x00\x00\x00\x1f\x02\x00\x00\x00\x00\x00\x00\x23\x00\x00\x00\x31\x02\x00\x00\x37\x02\x00\x00\xee\xff\xff\xff\x38\x02\x00\x00\xf3\x00\x00\x00\x44\x02\x00\x00\x00\x00\x00\x00\xbf\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x52\x02\x00\x00\x6e\x02\x00\x00\x4a\x02\x00\x00\x00\x00\x00\x00\x55\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x72\x02\x00\x00\xbf\x00\x00\x00\xbf\x00\x00\x00\xbf\x00\x00\x00\x0d\x01\x00\x00\xbf\x00\x00\x00\x4e\x02\x00\x00\x4e\x02\x00\x00\x64\x01\x00\x00\x71\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x4b\x02\x00\x00\xbf\x00\x00\x00\xbf\x00\x00\x00\x2a\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x61\x02\x00\x00\x5c\x02\x00\x00\x88\x00\x00\x00\x00\x00\x00\x00\xb2\x01\x00\x00\x5d\x02\x00\x00\x5a\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x93\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x4d\x00\x00\x00\x84\x01\x00\x00\x00\x00\x00\x00\xbf\x01\x00\x00\xbf\x01\x00\x00\x93\x02\x00\x00\xdf\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x73\x02\x00\x00\x7a\x02\x00\x00\x79\x02\x00\x00\xbf\x00\x00\x00\xfe\x01\x00\x00\x00\x00\x00\x00\xb0\x00\x00\x00\x84\x02\x00\x00\x7f\x02\x00\x00\x00\x00\x00\x00\xbf\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x6f\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x92\x02\x00\x00\xc7\x00\x00\x00\xbf\x00\x00\x00\xb3\x02\x00\x00\xbf\x00\x00\x00\xbf\x00\x00\x00\xbf\x00\x00\x00\x80\x02\x00\x00\xbf\x00\x00\x00\xbf\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xbf\x00\x00\x00\xbf\x00\x00\x00\x00\x00\x00\x00\xbf\x01\x00\x00\xbf\x00\x00\x00\x00\x00\x00\x00\xbd\x02\x00\x00\xbf\x02\x00\x00\x00\x00\x00\x00\xa0\x02\x00\x00\xbf\x00\x00\x00\xa3\x02\x00\x00\xcf\x02\x00\x00\xd1\x02\x00\x00\xae\x02\x00\x00\xd8\x02\x00\x00\xbf\x00\x00\x00\xc0\x00\x00\x00\xba\x02\x00\x00\x00\x00\x00\x00\xbf\x00\x00\x00\xbf\x00\x00\x00\xbf\x00\x00\x00\xbf\x00\x00\x00\xbf\x00\x00\x00\xbf\x00\x00\x00\xc3\x02\x00\x00\xc4\x02\x00\x00\xc5\x02\x00\x00\x00\x00\x00\x00\xd2\x02\x00\x00\x00\x00\x00\x00\xbf\x00\x00\x00\xbf\x00\x00\x00\xbf\x00\x00\x00\xd5\x02\x00\x00\xb4\x01\x00\x00\xbf\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xfb\x02\x00\x00\x00\x00\x00\x00\xd7\x02\x00\x00\x00\x00\x00\x00\xe6\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe9\x02\x00\x00\xea\x02\x00\x00\xf8\x02\x00\x00\xfd\x02\x00\x00\xfe\x02\x00\x00\x08\x03\x00\x00\x00\x00\x00\x00\xbf\x00\x00\x00\x4d\x00\x00\x00\x00\x00\x00\x00\xbf\x00\x00\x00\xbf\x00\x00\x00\xbf\x00\x00\x00\xbf\x00\x00\x00\xf0\x02\x00\x00\x21\x03\x00\x00\x00\x00\x00\x00\xbf\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe4\x00\x00\x00\x14\x03\x00\x00\x15\x03\x00\x00\x16\x03\x00\x00\x1d\x03\x00\x00\x70\x01\x00\x00\x1e\x03\x00\x00\xbf\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x39\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x39\x03\x00\x00\x00\x00\x00\x00\x26\x03\x00\x00\x27\x03\x00\x00\x33\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x34\x03\x00\x00\x2f\x03\x00\x00\x4d\x00\x00\x00\xbf\x00\x00\x00\x00\x00\x00\x00\x30\x03\x00\x00\x3c\x03\x00\x00\x3d\x03\x00\x00\x3b\x03\x00\x00\x00\x00\x00\x00\xbf\x00\x00\x00\x47\x03\x00\x00\xbf\x00\x00\x00\x00\x00\x00\x00\x4d\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"#

happyGotoOffsets :: HappyAddr
happyGotoOffsets :: HappyAddr
happyGotoOffsets = Addr# -> HappyAddr
HappyA# Addr#
"\x0c\x02\x00\x00\x7c\x03\x00\x00\xac\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x9e\x00\x00\x00\xf1\x00\x00\x00\x11\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xfd\xff\xff\xff\x0e\x00\x00\x00\x08\x02\x00\x00\x00\x00\x00\x00\xbc\x08\x00\x00\xcc\x08\x00\x00\xdc\x08\x00\x00\xec\x08\x00\x00\x00\x00\x00\x00\x7d\x03\x00\x00\x00\x00\x00\x00\x89\x03\x00\x00\x00\x00\x00\x00\x8a\x03\x00\x00\x00\x00\x00\x00\x8d\x03\x00\x00\x15\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x8f\x03\x00\x00\x43\x01\x00\x00\x4a\x01\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x3f\x00\x00\x00\x00\x00\x00\x00\x33\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x03\x00\x00\x32\x02\x00\x00\x83\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x7a\x00\x00\x00\x00\x00\x00\x00\x19\x01\x00\x00\x1d\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xfc\x08\x00\x00\x10\x00\x00\x00\x98\x00\x00\x00\xf6\x04\x00\x00\xeb\x01\x00\x00\x00\x00\x00\x00\xfc\x08\x00\x00\xfc\x08\x00\x00\xfc\x08\x00\x00\xfc\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1a\x00\x00\x00\x26\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xd1\x00\x00\x00\x00\x00\x00\x00\x76\x03\x00\x00\x43\x02\x00\x00\xab\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x26\x08\x00\x00\x70\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x42\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xd3\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x8e\x03\x00\x00\x1f\x03\x00\x00\x35\x01\x00\x00\x3a\x01\x00\x00\x79\x01\x00\x00\x9a\x01\x00\x00\x7e\x04\x00\x00\x2e\x03\x00\x00\x96\x04\x00\x00\x1a\x02\x00\x00\xe6\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x05\x00\x00\x00\x0e\x05\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa8\x01\x00\x00\x00\x00\x00\x00\xf4\x00\x00\x00\x26\x05\x00\x00\x00\x00\x00\x00\xb6\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf8\x08\x00\x00\x92\x03\x00\x00\x01\x09\x00\x00\xd4\x01\x00\x00\xa6\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x3e\x05\x00\x00\x00\x00\x00\x00\xbe\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0a\x09\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x56\x05\x00\x00\x00\x00\x00\x00\x6e\x05\x00\x00\xe0\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xef\xff\xff\xff\x00\x00\x00\x00\x00\x00\x00\x00\x75\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xd6\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x90\x03\x00\x00\x00\x00\x00\x00\x93\x03\x00\x00\x98\x03\x00\x00\x00\x00\x00\x00\x6f\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x9a\x03\x00\x00\x86\x05\x00\x00\x9e\x05\x00\x00\xb6\x05\x00\x00\x3e\x08\x00\x00\xce\x05\x00\x00\x97\x03\x00\x00\xa3\x03\x00\x00\xac\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xae\x04\x00\x00\x46\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1d\x02\x00\x00\x00\x00\x00\x00\x9e\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x36\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x7f\x00\x00\x00\x48\x02\x00\x00\x00\x00\x00\x00\x40\x01\x00\x00\x5b\x02\x00\x00\xa8\x03\x00\x00\xa7\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe6\x05\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x5e\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xee\x03\x00\x00\xab\x03\x00\x00\xfe\x05\x00\x00\x16\x06\x00\x00\x2e\x06\x00\x00\x00\x00\x00\x00\x46\x06\x00\x00\x5e\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xc6\x04\x00\x00\x06\x04\x00\x00\x00\x00\x00\x00\x60\x02\x00\x00\x1e\x04\x00\x00\x00\x00\x00\x00\xb3\x03\x00\x00\x2f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x76\x06\x00\x00\x00\x00\x00\x00\xb4\x03\x00\x00\x84\x00\x00\x00\x00\x00\x00\x00\x18\x01\x00\x00\x8e\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x36\x04\x00\x00\xa6\x06\x00\x00\xde\x04\x00\x00\xbe\x06\x00\x00\xd6\x06\x00\x00\xee\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x07\x00\x00\x1e\x07\x00\x00\x36\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x4e\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe1\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x66\x07\x00\x00\x94\x00\x00\x00\x00\x00\x00\x00\x7e\x07\x00\x00\x96\x07\x00\x00\xae\x07\x00\x00\xc6\x07\x00\x00\x00\x00\x00\x00\x66\x01\x00\x00\x00\x00\x00\x00\x4e\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xde\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xb6\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xc0\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe5\x00\x00\x00\x66\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf6\x07\x00\x00\x00\x00\x00\x00\x0e\x08\x00\x00\x00\x00\x00\x00\x0c\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"#

happyDefActions :: HappyAddr
happyDefActions :: HappyAddr
happyDefActions = Addr# -> HappyAddr
HappyA# Addr#
"\xfd\xff\xff\xff\x00\x00\x00\x00\xdb\xff\xff\xff\x00\x00\x00\x00\xfc\xff\xff\xff\xfb\xff\xff\xff\xf9\xff\xff\xff\xfa\xff\xff\xff\xf8\xff\xff\xff\xf7\xff\xff\xff\xf6\xff\xff\xff\xf5\xff\xff\xff\xf4\xff\xff\xff\xf3\xff\xff\xff\x00\x00\x00\x00\xf2\xff\xff\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xda\xff\xff\xff\xdb\xff\xff\xff\xdb\xff\xff\xff\xdb\xff\xff\xff\xdb\xff\xff\xff\xf1\xff\xff\xff\xfd\xff\xff\xff\xeb\xff\xff\xff\xfd\xff\xff\xff\xed\xff\xff\xff\xfd\xff\xff\xff\xef\xff\xff\xff\xfd\xff\xff\xff\xd3\xff\xff\xff\x00\x00\x00\x00\xd4\xff\xff\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xfd\xff\xff\xff\x00\x00\x00\x00\x00\x00\x00\x00\xe5\xff\xff\xff\x4d\xff\xff\xff\xe7\xff\xff\xff\x4d\xff\xff\xff\xe9\xff\xff\xff\x00\x00\x00\x00\xdd\xff\xff\xff\xb2\xff\xff\xff\x00\x00\x00\x00\xc3\xff\xff\xff\x00\x00\x00\x00\xcc\xff\xff\xff\xcf\xff\xff\xff\xce\xff\xff\xff\xcd\xff\xff\xff\xca\xff\xff\xff\xcb\xff\xff\xff\x00\x00\x00\x00\x4d\xff\xff\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe6\xff\xff\xff\xe8\xff\xff\xff\xdb\xff\xff\xff\x52\xff\xff\xff\x52\xff\xff\xff\xc3\xff\xff\xff\x00\x00\x00\x00\xd2\xff\xff\xff\xdb\xff\xff\xff\xdb\xff\xff\xff\xdb\xff\xff\xff\xdb\xff\xff\xff\xf0\xff\xff\xff\xea\xff\xff\xff\xec\xff\xff\xff\xee\xff\xff\xff\x7e\xff\xff\xff\x00\x00\x00\x00\x86\xff\xff\xff\x5c\xff\xff\xff\xd7\xff\xff\xff\x60\xff\xff\xff\x5f\xff\xff\xff\x65\xff\xff\xff\x7f\xff\xff\xff\x81\xff\xff\xff\x00\x00\x00\x00\x89\xff\xff\xff\x87\xff\xff\xff\x00\x00\x00\x00\x88\xff\xff\xff\xc3\xff\xff\xff\xc3\xff\xff\xff\x00\x00\x00\x00\x83\xff\xff\xff\x7e\xff\xff\xff\x00\x00\x00\x00\x94\xff\xff\xff\xa7\xff\xff\xff\xa6\xff\xff\xff\x95\xff\xff\xff\xba\xff\xff\xff\xb9\xff\xff\xff\x00\x00\x00\x00\x79\xff\xff\xff\x9e\xff\xff\xff\x00\x00\x00\x00\x9a\xff\xff\xff\x92\xff\xff\xff\x8d\xff\xff\xff\x81\xff\xff\xff\xc3\xff\xff\xff\x00\x00\x00\x00\x90\xff\xff\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xc3\xff\xff\xff\xc3\xff\xff\xff\xc3\xff\xff\xff\x00\x00\x00\x00\x6a\xff\xff\xff\x53\xff\xff\xff\x00\x00\x00\x00\x56\xff\xff\xff\x00\x00\x00\x00\xde\xff\xff\xff\x00\x00\x00\x00\xc3\xff\xff\xff\xd1\xff\xff\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x73\xff\xff\xff\xc3\xff\xff\xff\x4c\xff\xff\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xc3\xff\xff\xff\xd9\xff\xff\xff\xc3\xff\xff\xff\x00\x00\x00\x00\xc3\xff\xff\xff\xb0\xff\xff\xff\x7e\xff\xff\xff\x00\x00\x00\x00\xc4\xff\xff\xff\xa4\xff\xff\xff\xd1\xff\xff\xff\x00\x00\x00\x00\xc2\xff\xff\xff\x00\x00\x00\x00\xc3\xff\xff\xff\xc1\xff\xff\xff\xc3\xff\xff\xff\xb1\xff\xff\xff\x00\x00\x00\x00\x00\x00\x00\x00\xc3\xff\xff\xff\x74\xff\xff\xff\x00\x00\x00\x00\xc3\xff\xff\xff\x00\x00\x00\x00\xc3\xff\xff\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe0\xff\xff\xff\x54\xff\xff\xff\xdf\xff\xff\xff\x6c\xff\xff\xff\x6b\xff\xff\xff\x00\x00\x00\x00\xc9\xff\xff\xff\x00\x00\x00\x00\x00\x00\x00\x00\xa5\xff\xff\xff\x7e\xff\xff\xff\x00\x00\x00\x00\xd1\xff\xff\xff\x00\x00\x00\x00\x82\xff\xff\xff\xc3\xff\xff\xff\x91\xff\xff\xff\x8f\xff\xff\xff\xaf\xff\xff\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xd9\xff\xff\xff\xa5\xff\xff\xff\x00\x00\x00\x00\x8c\xff\xff\xff\x8a\xff\xff\xff\x00\x00\x00\x00\xc3\xff\xff\xff\xc3\xff\xff\xff\xc3\xff\xff\xff\x00\x00\x00\x00\xc3\xff\xff\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x94\xff\xff\xff\x93\xff\xff\xff\x95\xff\xff\xff\xaa\xff\xff\xff\x9a\xff\xff\xff\xc3\xff\xff\xff\xc3\xff\xff\xff\x57\xff\xff\xff\x62\xff\xff\xff\x63\xff\xff\xff\x8d\xff\xff\xff\x00\x00\x00\x00\xc3\xff\xff\xff\x67\xff\xff\xff\xcc\xff\xff\xff\x00\x00\x00\x00\x7e\xff\xff\xff\x64\xff\xff\xff\x65\xff\xff\xff\x7b\xff\xff\xff\x58\xff\xff\xff\x5a\xff\xff\xff\x00\x00\x00\x00\x00\x00\x00\x00\x59\xff\xff\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x5d\xff\xff\xff\x5e\xff\xff\xff\x61\xff\xff\xff\x5b\xff\xff\xff\x00\x00\x00\x00\x00\x00\x00\x00\x7c\xff\xff\xff\xc3\xff\xff\xff\x7e\xff\xff\xff\x66\xff\xff\xff\x7e\xff\xff\xff\x00\x00\x00\x00\x00\x00\x00\x00\x96\xff\xff\xff\xc3\xff\xff\xff\xc5\xff\xff\xff\xc6\xff\xff\xff\xa2\xff\xff\xff\x99\xff\xff\xff\x9a\xff\xff\xff\x9d\xff\xff\xff\x9b\xff\xff\xff\x9c\xff\xff\xff\x8b\xff\xff\xff\x8e\xff\xff\xff\x00\x00\x00\x00\x00\x00\x00\x00\xc3\xff\xff\xff\x00\x00\x00\x00\xc3\xff\xff\xff\xc3\xff\xff\xff\xc3\xff\xff\xff\xab\xff\xff\xff\xc3\xff\xff\xff\xc3\xff\xff\xff\x84\xff\xff\xff\xc8\xff\xff\xff\xc3\xff\xff\xff\xc3\xff\xff\xff\x69\xff\xff\xff\x00\x00\x00\x00\xc3\xff\xff\xff\x55\xff\xff\xff\xd6\xff\xff\xff\x00\x00\x00\x00\xd0\xff\xff\xff\x00\x00\x00\x00\xc3\xff\xff\xff\x00\x00\x00\x00\xd6\xff\xff\xff\x75\xff\xff\xff\x77\xff\xff\xff\x73\xff\xff\xff\xc3\xff\xff\xff\x7e\xff\xff\xff\x00\x00\x00\x00\xd8\xff\xff\xff\xc3\xff\xff\xff\xc3\xff\xff\xff\xc3\xff\xff\xff\xc3\xff\xff\xff\xc3\xff\xff\xff\xc3\xff\xff\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa3\xff\xff\xff\x00\x00\x00\x00\xdc\xff\xff\xff\xc3\xff\xff\xff\xc3\xff\xff\xff\xc3\xff\xff\xff\x00\x00\x00\x00\x00\x00\x00\x00\xc3\xff\xff\xff\x76\xff\xff\xff\xe3\xff\xff\xff\x00\x00\x00\x00\x50\xff\xff\xff\x00\x00\x00\x00\x51\xff\xff\xff\x00\x00\x00\x00\xe1\xff\xff\xff\x6d\xff\xff\xff\x68\xff\xff\xff\xa1\xff\xff\xff\xc7\xff\xff\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa0\xff\xff\xff\xc3\xff\xff\xff\x6e\xff\xff\xff\x97\xff\xff\xff\xc3\xff\xff\xff\xc3\xff\xff\xff\xc3\xff\xff\xff\xc3\xff\xff\xff\x00\x00\x00\x00\x7b\xff\xff\xff\x80\xff\xff\xff\xc3\xff\xff\xff\x7a\xff\xff\xff\x7d\xff\xff\xff\x85\xff\xff\xff\x8d\xff\xff\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x6f\xff\xff\xff\x00\x00\x00\x00\xc3\xff\xff\xff\xb5\xff\xff\xff\xb4\xff\xff\xff\xb3\xff\xff\xff\xb7\xff\xff\xff\xb6\xff\xff\xff\xd6\xff\xff\xff\x4e\xff\xff\xff\xd5\xff\xff\xff\x78\xff\xff\xff\xd6\xff\xff\xff\x4f\xff\xff\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xb8\xff\xff\xff\xc0\xff\xff\xff\xbf\xff\xff\xff\xbe\xff\xff\xff\xbd\xff\xff\xff\xbc\xff\xff\xff\xbb\xff\xff\xff\xe4\xff\xff\xff\xe2\xff\xff\xff\x00\x00\x00\x00\x00\x00\x00\x00\x6e\xff\xff\xff\xc3\xff\xff\xff\x9f\xff\xff\xff\xbd\xff\xff\xff\xbc\xff\xff\xff\xbb\xff\xff\xff\x71\xff\xff\xff\x70\xff\xff\xff\xc3\xff\xff\xff\x00\x00\x00\x00\xc3\xff\xff\xff\xae\xff\xff\xff\x6e\xff\xff\xff\x72\xff\xff\xff\xad\xff\xff\xff"#

happyCheck :: HappyAddr
happyCheck :: HappyAddr
happyCheck = Addr# -> HappyAddr
HappyA# Addr#
"\xff\xff\xff\xff\x02\x00\x00\x00\x13\x00\x00\x00\x02\x00\x00\x00\x05\x00\x00\x00\x06\x00\x00\x00\x07\x00\x00\x00\x08\x00\x00\x00\x39\x00\x00\x00\x0a\x00\x00\x00\x0b\x00\x00\x00\x0c\x00\x00\x00\x0d\x00\x00\x00\x02\x00\x00\x00\x20\x00\x00\x00\x10\x00\x00\x00\x13\x00\x00\x00\x12\x00\x00\x00\x13\x00\x00\x00\x14\x00\x00\x00\x15\x00\x00\x00\x16\x00\x00\x00\x02\x00\x00\x00\x29\x00\x00\x00\x13\x00\x00\x00\x2b\x00\x00\x00\x09\x00\x00\x00\x1c\x00\x00\x00\x2e\x00\x00\x00\x1e\x00\x00\x00\x16\x00\x00\x00\x20\x00\x00\x00\x31\x00\x00\x00\x13\x00\x00\x00\x23\x00\x00\x00\x13\x00\x00\x00\x13\x00\x00\x00\x26\x00\x00\x00\x27\x00\x00\x00\x26\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x2d\x00\x00\x00\x2c\x00\x00\x00\x02\x00\x00\x00\x13\x00\x00\x00\x2f\x00\x00\x00\x05\x00\x00\x00\x06\x00\x00\x00\x07\x00\x00\x00\x08\x00\x00\x00\x2e\x00\x00\x00\x0a\x00\x00\x00\x0b\x00\x00\x00\x0c\x00\x00\x00\x0d\x00\x00\x00\x39\x00\x00\x00\x13\x00\x00\x00\x10\x00\x00\x00\x2d\x00\x00\x00\x12\x00\x00\x00\x13\x00\x00\x00\x14\x00\x00\x00\x15\x00\x00\x00\x16\x00\x00\x00\x31\x00\x00\x00\x13\x00\x00\x00\x3b\x00\x00\x00\x3c\x00\x00\x00\x31\x00\x00\x00\x1c\x00\x00\x00\x10\x00\x00\x00\x1e\x00\x00\x00\x39\x00\x00\x00\x3a\x00\x00\x00\x28\x00\x00\x00\x29\x00\x00\x00\x23\x00\x00\x00\x34\x00\x00\x00\x02\x00\x00\x00\x26\x00\x00\x00\x27\x00\x00\x00\x38\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x16\x00\x00\x00\x2c\x00\x00\x00\x2d\x00\x00\x00\x02\x00\x00\x00\x2f\x00\x00\x00\x34\x00\x00\x00\x02\x00\x00\x00\x02\x00\x00\x00\x2e\x00\x00\x00\x38\x00\x00\x00\x05\x00\x00\x00\x06\x00\x00\x00\x07\x00\x00\x00\x08\x00\x00\x00\x39\x00\x00\x00\x0a\x00\x00\x00\x0b\x00\x00\x00\x0c\x00\x00\x00\x0d\x00\x00\x00\x22\x00\x00\x00\x1c\x00\x00\x00\x10\x00\x00\x00\x02\x00\x00\x00\x12\x00\x00\x00\x13\x00\x00\x00\x14\x00\x00\x00\x15\x00\x00\x00\x16\x00\x00\x00\x2b\x00\x00\x00\x1c\x00\x00\x00\x26\x00\x00\x00\x1e\x00\x00\x00\x1c\x00\x00\x00\x1c\x00\x00\x00\x1e\x00\x00\x00\x1e\x00\x00\x00\x2c\x00\x00\x00\x3b\x00\x00\x00\x3c\x00\x00\x00\x26\x00\x00\x00\x23\x00\x00\x00\x22\x00\x00\x00\x26\x00\x00\x00\x26\x00\x00\x00\x27\x00\x00\x00\x2c\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x2c\x00\x00\x00\x2c\x00\x00\x00\x2b\x00\x00\x00\x13\x00\x00\x00\x2f\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00\x04\x00\x00\x00\x24\x00\x00\x00\x20\x00\x00\x00\x07\x00\x00\x00\x16\x00\x00\x00\x20\x00\x00\x00\x13\x00\x00\x00\x39\x00\x00\x00\x22\x00\x00\x00\x2c\x00\x00\x00\x0e\x00\x00\x00\x13\x00\x00\x00\x10\x00\x00\x00\x30\x00\x00\x00\x31\x00\x00\x00\x32\x00\x00\x00\x2e\x00\x00\x00\x34\x00\x00\x00\x35\x00\x00\x00\x2e\x00\x00\x00\x18\x00\x00\x00\x19\x00\x00\x00\x1a\x00\x00\x00\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x08\x00\x00\x00\x13\x00\x00\x00\x20\x00\x00\x00\x34\x00\x00\x00\x22\x00\x00\x00\x13\x00\x00\x00\x24\x00\x00\x00\x38\x00\x00\x00\x26\x00\x00\x00\x27\x00\x00\x00\x28\x00\x00\x00\x13\x00\x00\x00\x2e\x00\x00\x00\x34\x00\x00\x00\x2c\x00\x00\x00\x3b\x00\x00\x00\x3c\x00\x00\x00\x38\x00\x00\x00\x30\x00\x00\x00\x31\x00\x00\x00\x32\x00\x00\x00\x02\x00\x00\x00\x34\x00\x00\x00\x35\x00\x00\x00\x13\x00\x00\x00\x37\x00\x00\x00\x38\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00\x04\x00\x00\x00\x30\x00\x00\x00\x20\x00\x00\x00\x07\x00\x00\x00\x2b\x00\x00\x00\x34\x00\x00\x00\x31\x00\x00\x00\x1e\x00\x00\x00\x1f\x00\x00\x00\x38\x00\x00\x00\x0e\x00\x00\x00\x29\x00\x00\x00\x10\x00\x00\x00\x20\x00\x00\x00\x39\x00\x00\x00\x3a\x00\x00\x00\x2e\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x2f\x00\x00\x00\x18\x00\x00\x00\x19\x00\x00\x00\x1a\x00\x00\x00\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x31\x00\x00\x00\x2e\x00\x00\x00\x20\x00\x00\x00\x20\x00\x00\x00\x22\x00\x00\x00\x36\x00\x00\x00\x24\x00\x00\x00\x13\x00\x00\x00\x26\x00\x00\x00\x13\x00\x00\x00\x28\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00\x04\x00\x00\x00\x2c\x00\x00\x00\x25\x00\x00\x00\x07\x00\x00\x00\x2e\x00\x00\x00\x30\x00\x00\x00\x31\x00\x00\x00\x32\x00\x00\x00\x2b\x00\x00\x00\x34\x00\x00\x00\x35\x00\x00\x00\x26\x00\x00\x00\x37\x00\x00\x00\x38\x00\x00\x00\x13\x00\x00\x00\x08\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x18\x00\x00\x00\x19\x00\x00\x00\x1a\x00\x00\x00\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x13\x00\x00\x00\x34\x00\x00\x00\x20\x00\x00\x00\x13\x00\x00\x00\x22\x00\x00\x00\x38\x00\x00\x00\x24\x00\x00\x00\x27\x00\x00\x00\x26\x00\x00\x00\x29\x00\x00\x00\x28\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00\x04\x00\x00\x00\x2c\x00\x00\x00\x20\x00\x00\x00\x07\x00\x00\x00\x30\x00\x00\x00\x30\x00\x00\x00\x31\x00\x00\x00\x32\x00\x00\x00\x34\x00\x00\x00\x34\x00\x00\x00\x35\x00\x00\x00\x29\x00\x00\x00\x38\x00\x00\x00\x38\x00\x00\x00\x13\x00\x00\x00\x22\x00\x00\x00\x2e\x00\x00\x00\x2e\x00\x00\x00\x2f\x00\x00\x00\x22\x00\x00\x00\x18\x00\x00\x00\x19\x00\x00\x00\x1a\x00\x00\x00\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x13\x00\x00\x00\x13\x00\x00\x00\x20\x00\x00\x00\x15\x00\x00\x00\x22\x00\x00\x00\x13\x00\x00\x00\x24\x00\x00\x00\x15\x00\x00\x00\x26\x00\x00\x00\x02\x00\x00\x00\x28\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00\x04\x00\x00\x00\x2c\x00\x00\x00\x02\x00\x00\x00\x07\x00\x00\x00\x30\x00\x00\x00\x30\x00\x00\x00\x31\x00\x00\x00\x32\x00\x00\x00\x34\x00\x00\x00\x34\x00\x00\x00\x35\x00\x00\x00\x21\x00\x00\x00\x38\x00\x00\x00\x38\x00\x00\x00\x2e\x00\x00\x00\x2f\x00\x00\x00\x13\x00\x00\x00\x13\x00\x00\x00\x14\x00\x00\x00\x08\x00\x00\x00\x18\x00\x00\x00\x13\x00\x00\x00\x1a\x00\x00\x00\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x08\x00\x00\x00\x13\x00\x00\x00\x20\x00\x00\x00\x29\x00\x00\x00\x13\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00\x04\x00\x00\x00\x26\x00\x00\x00\x22\x00\x00\x00\x07\x00\x00\x00\x13\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x2c\x00\x00\x00\x2b\x00\x00\x00\x2c\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x36\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00\x04\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x07\x00\x00\x00\x38\x00\x00\x00\x18\x00\x00\x00\x19\x00\x00\x00\x1a\x00\x00\x00\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x2d\x00\x00\x00\x34\x00\x00\x00\x20\x00\x00\x00\x36\x00\x00\x00\x37\x00\x00\x00\x38\x00\x00\x00\x13\x00\x00\x00\x14\x00\x00\x00\x26\x00\x00\x00\x18\x00\x00\x00\x19\x00\x00\x00\x1a\x00\x00\x00\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x13\x00\x00\x00\x2d\x00\x00\x00\x20\x00\x00\x00\x36\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00\x04\x00\x00\x00\x02\x00\x00\x00\x26\x00\x00\x00\x07\x00\x00\x00\x13\x00\x00\x00\x38\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00\x04\x00\x00\x00\x2b\x00\x00\x00\x2c\x00\x00\x00\x07\x00\x00\x00\x23\x00\x00\x00\x34\x00\x00\x00\x27\x00\x00\x00\x28\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x2a\x00\x00\x00\x2a\x00\x00\x00\x38\x00\x00\x00\x2d\x00\x00\x00\x1a\x00\x00\x00\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x20\x00\x00\x00\x23\x00\x00\x00\x1a\x00\x00\x00\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x26\x00\x00\x00\x27\x00\x00\x00\x20\x00\x00\x00\x13\x00\x00\x00\x23\x00\x00\x00\x15\x00\x00\x00\x2c\x00\x00\x00\x13\x00\x00\x00\x26\x00\x00\x00\x2a\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00\x04\x00\x00\x00\x02\x00\x00\x00\x2c\x00\x00\x00\x07\x00\x00\x00\x13\x00\x00\x00\x13\x00\x00\x00\x38\x00\x00\x00\x15\x00\x00\x00\x02\x00\x00\x00\x13\x00\x00\x00\x29\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00\x04\x00\x00\x00\x38\x00\x00\x00\x02\x00\x00\x00\x07\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x13\x00\x00\x00\x18\x00\x00\x00\x15\x00\x00\x00\x1a\x00\x00\x00\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x20\x00\x00\x00\x27\x00\x00\x00\x28\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x23\x00\x00\x00\x26\x00\x00\x00\x1a\x00\x00\x00\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x02\x00\x00\x00\x2a\x00\x00\x00\x20\x00\x00\x00\x24\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00\x04\x00\x00\x00\x2b\x00\x00\x00\x26\x00\x00\x00\x07\x00\x00\x00\x13\x00\x00\x00\x2c\x00\x00\x00\x15\x00\x00\x00\x38\x00\x00\x00\x2c\x00\x00\x00\x30\x00\x00\x00\x31\x00\x00\x00\x32\x00\x00\x00\x2b\x00\x00\x00\x34\x00\x00\x00\x35\x00\x00\x00\x25\x00\x00\x00\x13\x00\x00\x00\x13\x00\x00\x00\x15\x00\x00\x00\x15\x00\x00\x00\x38\x00\x00\x00\x26\x00\x00\x00\x1a\x00\x00\x00\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x02\x00\x00\x00\x13\x00\x00\x00\x20\x00\x00\x00\x02\x00\x00\x00\x05\x00\x00\x00\x06\x00\x00\x00\x07\x00\x00\x00\x08\x00\x00\x00\x26\x00\x00\x00\x0a\x00\x00\x00\x0b\x00\x00\x00\x0c\x00\x00\x00\x0d\x00\x00\x00\x05\x00\x00\x00\x06\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x12\x00\x00\x00\x13\x00\x00\x00\x14\x00\x00\x00\x15\x00\x00\x00\x16\x00\x00\x00\x2b\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x29\x00\x00\x00\x38\x00\x00\x00\x32\x00\x00\x00\x33\x00\x00\x00\x1c\x00\x00\x00\x13\x00\x00\x00\x14\x00\x00\x00\x2b\x00\x00\x00\x20\x00\x00\x00\x34\x00\x00\x00\x35\x00\x00\x00\x36\x00\x00\x00\x37\x00\x00\x00\x38\x00\x00\x00\x26\x00\x00\x00\x27\x00\x00\x00\x2f\x00\x00\x00\x29\x00\x00\x00\x13\x00\x00\x00\x14\x00\x00\x00\x2c\x00\x00\x00\x2b\x00\x00\x00\x2e\x00\x00\x00\x13\x00\x00\x00\x14\x00\x00\x00\x2b\x00\x00\x00\x13\x00\x00\x00\x22\x00\x00\x00\x2b\x00\x00\x00\x16\x00\x00\x00\x17\x00\x00\x00\x39\x00\x00\x00\x19\x00\x00\x00\x1a\x00\x00\x00\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x1e\x00\x00\x00\x02\x00\x00\x00\x22\x00\x00\x00\x21\x00\x00\x00\x22\x00\x00\x00\x23\x00\x00\x00\x24\x00\x00\x00\x25\x00\x00\x00\x26\x00\x00\x00\x27\x00\x00\x00\x28\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x16\x00\x00\x00\x17\x00\x00\x00\x23\x00\x00\x00\x02\x00\x00\x00\x2d\x00\x00\x00\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x1e\x00\x00\x00\x34\x00\x00\x00\x35\x00\x00\x00\x36\x00\x00\x00\x37\x00\x00\x00\x38\x00\x00\x00\x13\x00\x00\x00\x2f\x00\x00\x00\x27\x00\x00\x00\x16\x00\x00\x00\x17\x00\x00\x00\x13\x00\x00\x00\x19\x00\x00\x00\x25\x00\x00\x00\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x1e\x00\x00\x00\x2b\x00\x00\x00\x11\x00\x00\x00\x21\x00\x00\x00\x22\x00\x00\x00\x23\x00\x00\x00\x24\x00\x00\x00\x25\x00\x00\x00\x26\x00\x00\x00\x27\x00\x00\x00\x28\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x13\x00\x00\x00\x2b\x00\x00\x00\x02\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x13\x00\x00\x00\x02\x00\x00\x00\x2b\x00\x00\x00\x28\x00\x00\x00\x34\x00\x00\x00\x35\x00\x00\x00\x36\x00\x00\x00\x37\x00\x00\x00\x38\x00\x00\x00\x34\x00\x00\x00\x35\x00\x00\x00\x36\x00\x00\x00\x37\x00\x00\x00\x38\x00\x00\x00\x36\x00\x00\x00\x21\x00\x00\x00\x27\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x16\x00\x00\x00\x17\x00\x00\x00\x2b\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x1e\x00\x00\x00\x34\x00\x00\x00\x35\x00\x00\x00\x36\x00\x00\x00\x37\x00\x00\x00\x38\x00\x00\x00\x34\x00\x00\x00\x02\x00\x00\x00\x36\x00\x00\x00\x37\x00\x00\x00\x38\x00\x00\x00\x05\x00\x00\x00\x06\x00\x00\x00\x07\x00\x00\x00\x08\x00\x00\x00\x23\x00\x00\x00\x0a\x00\x00\x00\x0b\x00\x00\x00\x0c\x00\x00\x00\x0d\x00\x00\x00\x2f\x00\x00\x00\x2a\x00\x00\x00\x25\x00\x00\x00\x36\x00\x00\x00\x12\x00\x00\x00\x13\x00\x00\x00\x14\x00\x00\x00\x15\x00\x00\x00\x16\x00\x00\x00\x05\x00\x00\x00\x06\x00\x00\x00\x07\x00\x00\x00\x08\x00\x00\x00\x2b\x00\x00\x00\x0a\x00\x00\x00\x0b\x00\x00\x00\x0c\x00\x00\x00\x0d\x00\x00\x00\x22\x00\x00\x00\x02\x00\x00\x00\x36\x00\x00\x00\x23\x00\x00\x00\x12\x00\x00\x00\x13\x00\x00\x00\x14\x00\x00\x00\x15\x00\x00\x00\x16\x00\x00\x00\x05\x00\x00\x00\x06\x00\x00\x00\x07\x00\x00\x00\x08\x00\x00\x00\x02\x00\x00\x00\x0a\x00\x00\x00\x0b\x00\x00\x00\x0c\x00\x00\x00\x0d\x00\x00\x00\x09\x00\x00\x00\x27\x00\x00\x00\x25\x00\x00\x00\x23\x00\x00\x00\x12\x00\x00\x00\x13\x00\x00\x00\x14\x00\x00\x00\x15\x00\x00\x00\x16\x00\x00\x00\x05\x00\x00\x00\x06\x00\x00\x00\x07\x00\x00\x00\x08\x00\x00\x00\x02\x00\x00\x00\x0a\x00\x00\x00\x0b\x00\x00\x00\x0c\x00\x00\x00\x0d\x00\x00\x00\x09\x00\x00\x00\x2b\x00\x00\x00\x02\x00\x00\x00\x23\x00\x00\x00\x12\x00\x00\x00\x13\x00\x00\x00\x14\x00\x00\x00\x15\x00\x00\x00\x16\x00\x00\x00\x05\x00\x00\x00\x06\x00\x00\x00\x07\x00\x00\x00\x08\x00\x00\x00\x2b\x00\x00\x00\x0a\x00\x00\x00\x0b\x00\x00\x00\x0c\x00\x00\x00\x0d\x00\x00\x00\x27\x00\x00\x00\x27\x00\x00\x00\x27\x00\x00\x00\x23\x00\x00\x00\x12\x00\x00\x00\x13\x00\x00\x00\x14\x00\x00\x00\x15\x00\x00\x00\x16\x00\x00\x00\x05\x00\x00\x00\x06\x00\x00\x00\x07\x00\x00\x00\x08\x00\x00\x00\x25\x00\x00\x00\x0a\x00\x00\x00\x0b\x00\x00\x00\x0c\x00\x00\x00\x0d\x00\x00\x00\x27\x00\x00\x00\x02\x00\x00\x00\x27\x00\x00\x00\x23\x00\x00\x00\x12\x00\x00\x00\x13\x00\x00\x00\x14\x00\x00\x00\x15\x00\x00\x00\x16\x00\x00\x00\x05\x00\x00\x00\x06\x00\x00\x00\x07\x00\x00\x00\x08\x00\x00\x00\x23\x00\x00\x00\x0a\x00\x00\x00\x0b\x00\x00\x00\x0c\x00\x00\x00\x0d\x00\x00\x00\x25\x00\x00\x00\x25\x00\x00\x00\x22\x00\x00\x00\x21\x00\x00\x00\x12\x00\x00\x00\x13\x00\x00\x00\x14\x00\x00\x00\x15\x00\x00\x00\x16\x00\x00\x00\x05\x00\x00\x00\x06\x00\x00\x00\x07\x00\x00\x00\x08\x00\x00\x00\x23\x00\x00\x00\x0a\x00\x00\x00\x0b\x00\x00\x00\x0c\x00\x00\x00\x0d\x00\x00\x00\x23\x00\x00\x00\x23\x00\x00\x00\x22\x00\x00\x00\x02\x00\x00\x00\x12\x00\x00\x00\x13\x00\x00\x00\x14\x00\x00\x00\x15\x00\x00\x00\x16\x00\x00\x00\x05\x00\x00\x00\x06\x00\x00\x00\x07\x00\x00\x00\x08\x00\x00\x00\x0e\x00\x00\x00\x0a\x00\x00\x00\x0b\x00\x00\x00\x0c\x00\x00\x00\x0d\x00\x00\x00\x13\x00\x00\x00\x2b\x00\x00\x00\x22\x00\x00\x00\x16\x00\x00\x00\x12\x00\x00\x00\x13\x00\x00\x00\x14\x00\x00\x00\x15\x00\x00\x00\x16\x00\x00\x00\x27\x00\x00\x00\x27\x00\x00\x00\x27\x00\x00\x00\x1f\x00\x00\x00\x20\x00\x00\x00\x23\x00\x00\x00\x13\x00\x00\x00\x09\x00\x00\x00\x25\x00\x00\x00\x16\x00\x00\x00\x17\x00\x00\x00\x22\x00\x00\x00\x19\x00\x00\x00\x1a\x00\x00\x00\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x1e\x00\x00\x00\x27\x00\x00\x00\x27\x00\x00\x00\x21\x00\x00\x00\x22\x00\x00\x00\x23\x00\x00\x00\x24\x00\x00\x00\x25\x00\x00\x00\x26\x00\x00\x00\x27\x00\x00\x00\x28\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x13\x00\x00\x00\x27\x00\x00\x00\x27\x00\x00\x00\x16\x00\x00\x00\x17\x00\x00\x00\x2f\x00\x00\x00\x19\x00\x00\x00\x1a\x00\x00\x00\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x1e\x00\x00\x00\x2a\x00\x00\x00\x36\x00\x00\x00\x21\x00\x00\x00\x22\x00\x00\x00\x23\x00\x00\x00\x24\x00\x00\x00\x25\x00\x00\x00\x26\x00\x00\x00\x27\x00\x00\x00\x28\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x13\x00\x00\x00\x36\x00\x00\x00\x36\x00\x00\x00\x16\x00\x00\x00\x17\x00\x00\x00\x2f\x00\x00\x00\x19\x00\x00\x00\x1a\x00\x00\x00\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x1e\x00\x00\x00\x01\x00\x00\x00\x01\x00\x00\x00\x21\x00\x00\x00\x22\x00\x00\x00\x23\x00\x00\x00\x24\x00\x00\x00\x25\x00\x00\x00\x26\x00\x00\x00\x27\x00\x00\x00\x28\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x13\x00\x00\x00\x01\x00\x00\x00\x01\x00\x00\x00\x16\x00\x00\x00\x17\x00\x00\x00\x01\x00\x00\x00\x19\x00\x00\x00\x01\x00\x00\x00\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x1e\x00\x00\x00\x13\x00\x00\x00\x13\x00\x00\x00\x21\x00\x00\x00\x22\x00\x00\x00\x23\x00\x00\x00\x24\x00\x00\x00\x25\x00\x00\x00\x26\x00\x00\x00\x27\x00\x00\x00\x28\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x13\x00\x00\x00\x10\x00\x00\x00\x13\x00\x00\x00\x16\x00\x00\x00\x17\x00\x00\x00\x13\x00\x00\x00\x19\x00\x00\x00\x10\x00\x00\x00\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x1e\x00\x00\x00\x13\x00\x00\x00\x17\x00\x00\x00\x21\x00\x00\x00\x22\x00\x00\x00\x23\x00\x00\x00\x24\x00\x00\x00\x25\x00\x00\x00\x26\x00\x00\x00\x27\x00\x00\x00\x28\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x13\x00\x00\x00\x17\x00\x00\x00\x13\x00\x00\x00\x16\x00\x00\x00\x17\x00\x00\x00\x13\x00\x00\x00\x19\x00\x00\x00\x1a\x00\x00\x00\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x1e\x00\x00\x00\x12\x00\x00\x00\x12\x00\x00\x00\x21\x00\x00\x00\x12\x00\x00\x00\x23\x00\x00\x00\x24\x00\x00\x00\x25\x00\x00\x00\x26\x00\x00\x00\x27\x00\x00\x00\x28\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x13\x00\x00\x00\x12\x00\x00\x00\xff\xff\xff\xff\x16\x00\x00\x00\x17\x00\x00\x00\xff\xff\xff\xff\x19\x00\x00\x00\x1a\x00\x00\x00\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x1e\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x21\x00\x00\x00\xff\xff\xff\xff\x23\x00\x00\x00\x24\x00\x00\x00\x25\x00\x00\x00\x26\x00\x00\x00\x27\x00\x00\x00\x28\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x13\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x16\x00\x00\x00\x17\x00\x00\x00\xff\xff\xff\xff\x19\x00\x00\x00\xff\xff\xff\xff\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x1e\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x21\x00\x00\x00\x22\x00\x00\x00\x23\x00\x00\x00\x24\x00\x00\x00\x25\x00\x00\x00\x26\x00\x00\x00\x27\x00\x00\x00\x28\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x13\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x16\x00\x00\x00\x17\x00\x00\x00\xff\xff\xff\xff\x19\x00\x00\x00\xff\xff\xff\xff\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x1e\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x21\x00\x00\x00\x22\x00\x00\x00\x23\x00\x00\x00\x24\x00\x00\x00\x25\x00\x00\x00\x26\x00\x00\x00\x27\x00\x00\x00\x28\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x13\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x16\x00\x00\x00\x17\x00\x00\x00\xff\xff\xff\xff\x19\x00\x00\x00\xff\xff\xff\xff\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x1e\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x21\x00\x00\x00\x22\x00\x00\x00\x23\x00\x00\x00\x24\x00\x00\x00\x25\x00\x00\x00\x26\x00\x00\x00\x27\x00\x00\x00\x28\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x13\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x16\x00\x00\x00\x17\x00\x00\x00\xff\xff\xff\xff\x19\x00\x00\x00\xff\xff\xff\xff\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x1e\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x21\x00\x00\x00\x22\x00\x00\x00\x23\x00\x00\x00\x24\x00\x00\x00\x25\x00\x00\x00\x26\x00\x00\x00\x27\x00\x00\x00\x28\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x13\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x16\x00\x00\x00\x17\x00\x00\x00\xff\xff\xff\xff\x19\x00\x00\x00\xff\xff\xff\xff\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x1e\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x21\x00\x00\x00\x22\x00\x00\x00\x23\x00\x00\x00\x24\x00\x00\x00\x25\x00\x00\x00\x26\x00\x00\x00\x27\x00\x00\x00\x28\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x13\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x16\x00\x00\x00\x17\x00\x00\x00\xff\xff\xff\xff\x19\x00\x00\x00\xff\xff\xff\xff\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x1e\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x21\x00\x00\x00\x22\x00\x00\x00\x23\x00\x00\x00\x24\x00\x00\x00\x25\x00\x00\x00\x26\x00\x00\x00\x27\x00\x00\x00\x28\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x13\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x16\x00\x00\x00\x17\x00\x00\x00\xff\xff\xff\xff\x19\x00\x00\x00\xff\xff\xff\xff\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x1e\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x21\x00\x00\x00\x22\x00\x00\x00\x23\x00\x00\x00\x24\x00\x00\x00\x25\x00\x00\x00\x26\x00\x00\x00\x27\x00\x00\x00\x28\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x13\x00\x00\x00\xff\xff\xff\xff\x15\x00\x00\x00\x16\x00\x00\x00\x17\x00\x00\x00\xff\xff\xff\xff\x19\x00\x00\x00\xff\xff\xff\xff\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x1e\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x21\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x24\x00\x00\x00\x25\x00\x00\x00\x26\x00\x00\x00\x27\x00\x00\x00\x28\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x13\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x16\x00\x00\x00\x17\x00\x00\x00\x18\x00\x00\x00\x19\x00\x00\x00\xff\xff\xff\xff\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x1e\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x21\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x24\x00\x00\x00\x25\x00\x00\x00\x26\x00\x00\x00\x27\x00\x00\x00\x28\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x13\x00\x00\x00\xff\xff\xff\xff\x15\x00\x00\x00\x16\x00\x00\x00\x17\x00\x00\x00\xff\xff\xff\xff\x19\x00\x00\x00\xff\xff\xff\xff\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x1e\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x21\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x24\x00\x00\x00\x25\x00\x00\x00\x26\x00\x00\x00\x27\x00\x00\x00\x28\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x13\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x16\x00\x00\x00\x17\x00\x00\x00\x18\x00\x00\x00\x19\x00\x00\x00\xff\xff\xff\xff\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x1e\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x21\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x24\x00\x00\x00\x25\x00\x00\x00\x26\x00\x00\x00\x27\x00\x00\x00\x28\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x13\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x16\x00\x00\x00\x17\x00\x00\x00\xff\xff\xff\xff\x19\x00\x00\x00\xff\xff\xff\xff\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x1e\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x21\x00\x00\x00\xff\xff\xff\xff\x23\x00\x00\x00\x24\x00\x00\x00\x25\x00\x00\x00\x26\x00\x00\x00\x27\x00\x00\x00\x28\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x13\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x16\x00\x00\x00\x17\x00\x00\x00\xff\xff\xff\xff\x19\x00\x00\x00\xff\xff\xff\xff\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x1e\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x21\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x24\x00\x00\x00\x25\x00\x00\x00\x26\x00\x00\x00\x27\x00\x00\x00\x28\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x13\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x16\x00\x00\x00\x17\x00\x00\x00\xff\xff\xff\xff\x19\x00\x00\x00\xff\xff\xff\xff\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x1e\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x21\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x24\x00\x00\x00\x25\x00\x00\x00\x26\x00\x00\x00\x27\x00\x00\x00\x28\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x13\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x16\x00\x00\x00\x17\x00\x00\x00\xff\xff\xff\xff\x19\x00\x00\x00\xff\xff\xff\xff\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x1e\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x21\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x24\x00\x00\x00\x25\x00\x00\x00\x26\x00\x00\x00\x27\x00\x00\x00\x28\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x13\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x16\x00\x00\x00\x17\x00\x00\x00\xff\xff\xff\xff\x19\x00\x00\x00\xff\xff\xff\xff\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x1e\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x21\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x24\x00\x00\x00\x25\x00\x00\x00\x26\x00\x00\x00\x27\x00\x00\x00\x28\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x13\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x16\x00\x00\x00\x17\x00\x00\x00\xff\xff\xff\xff\x19\x00\x00\x00\xff\xff\xff\xff\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x1e\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x21\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x24\x00\x00\x00\x25\x00\x00\x00\x26\x00\x00\x00\x27\x00\x00\x00\x28\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x13\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x16\x00\x00\x00\x17\x00\x00\x00\xff\xff\xff\xff\x19\x00\x00\x00\xff\xff\xff\xff\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x1e\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x21\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x24\x00\x00\x00\x25\x00\x00\x00\x26\x00\x00\x00\x27\x00\x00\x00\x28\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x13\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x16\x00\x00\x00\x17\x00\x00\x00\xff\xff\xff\xff\x19\x00\x00\x00\xff\xff\xff\xff\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x1e\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x21\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x24\x00\x00\x00\x25\x00\x00\x00\x26\x00\x00\x00\x27\x00\x00\x00\x28\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x13\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x16\x00\x00\x00\x17\x00\x00\x00\xff\xff\xff\xff\x19\x00\x00\x00\xff\xff\xff\xff\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x1e\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x21\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x24\x00\x00\x00\x25\x00\x00\x00\x26\x00\x00\x00\x27\x00\x00\x00\x28\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x13\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x16\x00\x00\x00\x17\x00\x00\x00\xff\xff\xff\xff\x19\x00\x00\x00\xff\xff\xff\xff\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x1e\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x21\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x24\x00\x00\x00\x25\x00\x00\x00\x26\x00\x00\x00\x27\x00\x00\x00\x28\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x13\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x16\x00\x00\x00\x17\x00\x00\x00\xff\xff\xff\xff\x19\x00\x00\x00\xff\xff\xff\xff\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x1e\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x21\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x24\x00\x00\x00\x25\x00\x00\x00\x26\x00\x00\x00\x27\x00\x00\x00\x28\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x13\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x16\x00\x00\x00\x17\x00\x00\x00\xff\xff\xff\xff\x19\x00\x00\x00\xff\xff\xff\xff\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x1e\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x21\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x24\x00\x00\x00\x25\x00\x00\x00\x26\x00\x00\x00\x27\x00\x00\x00\x28\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x13\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x16\x00\x00\x00\x17\x00\x00\x00\xff\xff\xff\xff\x19\x00\x00\x00\xff\xff\xff\xff\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x1e\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x21\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x24\x00\x00\x00\x25\x00\x00\x00\x26\x00\x00\x00\x27\x00\x00\x00\x28\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x13\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x16\x00\x00\x00\x17\x00\x00\x00\xff\xff\xff\xff\x19\x00\x00\x00\xff\xff\xff\xff\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x1e\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x21\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x24\x00\x00\x00\x25\x00\x00\x00\x26\x00\x00\x00\x27\x00\x00\x00\x28\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x13\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x16\x00\x00\x00\x17\x00\x00\x00\xff\xff\xff\xff\x19\x00\x00\x00\xff\xff\xff\xff\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x1e\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x21\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x24\x00\x00\x00\x25\x00\x00\x00\x26\x00\x00\x00\x27\x00\x00\x00\x28\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x13\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x16\x00\x00\x00\x17\x00\x00\x00\xff\xff\xff\xff\x19\x00\x00\x00\xff\xff\xff\xff\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x1e\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x21\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x24\x00\x00\x00\x25\x00\x00\x00\x26\x00\x00\x00\x27\x00\x00\x00\x28\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x13\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x16\x00\x00\x00\x17\x00\x00\x00\xff\xff\xff\xff\x19\x00\x00\x00\xff\xff\xff\xff\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x1e\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x21\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x24\x00\x00\x00\x25\x00\x00\x00\x26\x00\x00\x00\x27\x00\x00\x00\x28\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x13\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x16\x00\x00\x00\x17\x00\x00\x00\xff\xff\xff\xff\x19\x00\x00\x00\xff\xff\xff\xff\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x1e\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x21\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x24\x00\x00\x00\x25\x00\x00\x00\x26\x00\x00\x00\x27\x00\x00\x00\x28\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x13\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x16\x00\x00\x00\x17\x00\x00\x00\xff\xff\xff\xff\x19\x00\x00\x00\xff\xff\xff\xff\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x1e\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x21\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x24\x00\x00\x00\x25\x00\x00\x00\x26\x00\x00\x00\x27\x00\x00\x00\x28\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x13\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x16\x00\x00\x00\x17\x00\x00\x00\xff\xff\xff\xff\x19\x00\x00\x00\xff\xff\xff\xff\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x1e\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x21\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x24\x00\x00\x00\x25\x00\x00\x00\x26\x00\x00\x00\x27\x00\x00\x00\x28\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x13\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x16\x00\x00\x00\x17\x00\x00\x00\xff\xff\xff\xff\x19\x00\x00\x00\xff\xff\xff\xff\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x1e\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x21\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x24\x00\x00\x00\x25\x00\x00\x00\x26\x00\x00\x00\x27\x00\x00\x00\x28\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x13\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x16\x00\x00\x00\x17\x00\x00\x00\xff\xff\xff\xff\x19\x00\x00\x00\xff\xff\xff\xff\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x1e\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x21\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x24\x00\x00\x00\x25\x00\x00\x00\x26\x00\x00\x00\x27\x00\x00\x00\x28\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x13\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x16\x00\x00\x00\x17\x00\x00\x00\xff\xff\xff\xff\x19\x00\x00\x00\xff\xff\xff\xff\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x1e\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x21\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x24\x00\x00\x00\x25\x00\x00\x00\x26\x00\x00\x00\x27\x00\x00\x00\x28\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x13\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x16\x00\x00\x00\x17\x00\x00\x00\xff\xff\xff\xff\x19\x00\x00\x00\xff\xff\xff\xff\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x1e\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x21\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x24\x00\x00\x00\x25\x00\x00\x00\x26\x00\x00\x00\x27\x00\x00\x00\x28\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x13\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x16\x00\x00\x00\x17\x00\x00\x00\xff\xff\xff\xff\x19\x00\x00\x00\xff\xff\xff\xff\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x1e\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x21\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x24\x00\x00\x00\x25\x00\x00\x00\x26\x00\x00\x00\x27\x00\x00\x00\x28\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x13\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x16\x00\x00\x00\x17\x00\x00\x00\xff\xff\xff\xff\x19\x00\x00\x00\xff\xff\xff\xff\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x1e\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x21\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x24\x00\x00\x00\x25\x00\x00\x00\x26\x00\x00\x00\x27\x00\x00\x00\x28\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x13\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x16\x00\x00\x00\x17\x00\x00\x00\xff\xff\xff\xff\x19\x00\x00\x00\xff\xff\xff\xff\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x1e\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x21\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x24\x00\x00\x00\x25\x00\x00\x00\x26\x00\x00\x00\x27\x00\x00\x00\x28\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x13\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x16\x00\x00\x00\x17\x00\x00\x00\xff\xff\xff\xff\x19\x00\x00\x00\xff\xff\xff\xff\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x1e\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x21\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x24\x00\x00\x00\x25\x00\x00\x00\x26\x00\x00\x00\x27\x00\x00\x00\x28\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x13\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x16\x00\x00\x00\x17\x00\x00\x00\xff\xff\xff\xff\x19\x00\x00\x00\xff\xff\xff\xff\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x1e\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x21\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x24\x00\x00\x00\x25\x00\x00\x00\x26\x00\x00\x00\x27\x00\x00\x00\x28\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x13\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x16\x00\x00\x00\x17\x00\x00\x00\xff\xff\xff\xff\x19\x00\x00\x00\xff\xff\xff\xff\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x1e\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x21\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x24\x00\x00\x00\x25\x00\x00\x00\x26\x00\x00\x00\x27\x00\x00\x00\x28\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x13\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x16\x00\x00\x00\x17\x00\x00\x00\xff\xff\xff\xff\x19\x00\x00\x00\xff\xff\xff\xff\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x1e\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x21\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x24\x00\x00\x00\x25\x00\x00\x00\x26\x00\x00\x00\x27\x00\x00\x00\x28\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x13\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x16\x00\x00\x00\x17\x00\x00\x00\xff\xff\xff\xff\x19\x00\x00\x00\xff\xff\xff\xff\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x1e\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x21\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x24\x00\x00\x00\x25\x00\x00\x00\x26\x00\x00\x00\x27\x00\x00\x00\x28\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x13\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x16\x00\x00\x00\x17\x00\x00\x00\xff\xff\xff\xff\x19\x00\x00\x00\xff\xff\xff\xff\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x1e\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x21\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x24\x00\x00\x00\x25\x00\x00\x00\x26\x00\x00\x00\x27\x00\x00\x00\x28\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x13\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x16\x00\x00\x00\x17\x00\x00\x00\xff\xff\xff\xff\x19\x00\x00\x00\xff\xff\xff\xff\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x1e\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x21\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x24\x00\x00\x00\x25\x00\x00\x00\x26\x00\x00\x00\x27\x00\x00\x00\x28\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x13\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x16\x00\x00\x00\x17\x00\x00\x00\xff\xff\xff\xff\x19\x00\x00\x00\xff\xff\xff\xff\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x1e\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x21\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x24\x00\x00\x00\x25\x00\x00\x00\x26\x00\x00\x00\x27\x00\x00\x00\x28\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x13\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x16\x00\x00\x00\x17\x00\x00\x00\xff\xff\xff\xff\x19\x00\x00\x00\xff\xff\xff\xff\x0e\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x1e\x00\x00\x00\xff\xff\xff\xff\x13\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x16\x00\x00\x00\xff\xff\xff\xff\x25\x00\x00\x00\x26\x00\x00\x00\x27\x00\x00\x00\x28\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x13\x00\x00\x00\x1f\x00\x00\x00\xff\xff\xff\xff\x16\x00\x00\x00\x17\x00\x00\x00\xff\xff\xff\xff\x19\x00\x00\x00\x16\x00\x00\x00\x17\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x1e\x00\x00\x00\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x1e\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x25\x00\x00\x00\x26\x00\x00\x00\x27\x00\x00\x00\x28\x00\x00\x00\x29\x00\x00\x00\x2a\x00\x00\x00\x20\x00\x00\x00\xff\xff\xff\xff\x22\x00\x00\x00\xff\xff\xff\xff\x24\x00\x00\x00\xff\xff\xff\xff\x26\x00\x00\x00\xff\xff\xff\xff\x28\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x2c\x00\x00\x00\x2d\x00\x00\x00\x2e\x00\x00\x00\xff\xff\xff\xff\x30\x00\x00\x00\x31\x00\x00\x00\x32\x00\x00\x00\xff\xff\xff\xff\x34\x00\x00\x00\x35\x00\x00\x00\x22\x00\x00\x00\xff\xff\xff\xff\x24\x00\x00\x00\xff\xff\xff\xff\x26\x00\x00\x00\xff\xff\xff\xff\x28\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x2c\x00\x00\x00\x2d\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x30\x00\x00\x00\x31\x00\x00\x00\x32\x00\x00\x00\xff\xff\xff\xff\x34\x00\x00\x00\x35\x00\x00\x00\x22\x00\x00\x00\xff\xff\xff\xff\x24\x00\x00\x00\xff\xff\xff\xff\x26\x00\x00\x00\xff\xff\xff\xff\x28\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x24\x00\x00\x00\x2c\x00\x00\x00\x26\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x30\x00\x00\x00\x31\x00\x00\x00\x32\x00\x00\x00\x2c\x00\x00\x00\x34\x00\x00\x00\x35\x00\x00\x00\xff\xff\xff\xff\x30\x00\x00\x00\x31\x00\x00\x00\x32\x00\x00\x00\xff\xff\xff\xff\x34\x00\x00\x00\x35\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00\x04\x00\x00\x00\x05\x00\x00\x00\x06\x00\x00\x00\x07\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x0a\x00\x00\x00\x0b\x00\x00\x00\x0c\x00\x00\x00\x0d\x00\x00\x00\xff\xff\xff\xff\x0f\x00\x00\x00\xff\xff\xff\xff\x11\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00\x04\x00\x00\x00\x05\x00\x00\x00\x06\x00\x00\x00\x07\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x0a\x00\x00\x00\x0b\x00\x00\x00\x0c\x00\x00\x00\x0d\x00\x00\x00\xff\xff\xff\xff\x0f\x00\x00\x00\xff\xff\xff\xff\x11\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00\x04\x00\x00\x00\x05\x00\x00\x00\x06\x00\x00\x00\x07\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x0a\x00\x00\x00\x0b\x00\x00\x00\x0c\x00\x00\x00\x0d\x00\x00\x00\xff\xff\xff\xff\x0f\x00\x00\x00\xff\xff\xff\xff\x11\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00\x04\x00\x00\x00\x05\x00\x00\x00\x06\x00\x00\x00\x07\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x0a\x00\x00\x00\x0b\x00\x00\x00\x0c\x00\x00\x00\x0d\x00\x00\x00\xff\xff\xff\xff\x0f\x00\x00\x00\xff\xff\xff\xff\x11\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00\x04\x00\x00\x00\x05\x00\x00\x00\x06\x00\x00\x00\x07\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x0a\x00\x00\x00\x0b\x00\x00\x00\x0c\x00\x00\x00\x0d\x00\x00\x00\xff\xff\xff\xff\x0f\x00\x00\x00\xff\xff\xff\xff\x11\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00\x04\x00\x00\x00\x05\x00\x00\x00\x06\x00\x00\x00\x07\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x0a\x00\x00\x00\x0b\x00\x00\x00\x0c\x00\x00\x00\x0d\x00\x00\x00\xff\xff\xff\xff\x0f\x00\x00\x00\xff\xff\xff\xff\x11\x00\x00\x00\x16\x00\x00\x00\x17\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x1e\x00\x00\x00\x16\x00\x00\x00\x17\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x1e\x00\x00\x00\x16\x00\x00\x00\x17\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x1e\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff"#

happyTable :: HappyAddr
happyTable :: HappyAddr
happyTable = Addr# -> HappyAddr
HappyA# Addr#
"\x00\x00\x00\x00\x58\xff\xff\xff\x82\x00\x00\x00\x28\x00\x00\x00\x58\xff\xff\xff\x58\xff\xff\xff\x58\xff\xff\xff\x58\xff\xff\xff\xff\xff\xff\xff\x58\xff\xff\xff\x58\xff\xff\xff\x58\xff\xff\xff\x58\xff\xff\xff\x28\x00\x00\x00\x14\x01\x00\x00\x58\xff\xff\xff\x28\x00\x00\x00\x58\xff\xff\xff\x58\xff\xff\xff\x58\xff\xff\xff\x58\xff\xff\xff\x58\xff\xff\xff\x28\x00\x00\x00\xaf\x00\x00\x00\xa8\x00\x00\x00\xd1\xff\xff\xff\x2e\x00\x00\x00\x58\xff\xff\xff\x15\x01\x00\x00\x58\xff\xff\xff\x3f\x00\x00\x00\xf2\x00\x00\x00\x1c\x01\x00\x00\x28\x00\x00\x00\x58\xff\xff\xff\x82\x00\x00\x00\x2f\x00\x00\x00\x58\xff\xff\xff\x58\xff\xff\xff\x0f\x01\x00\x00\x58\xff\xff\xff\x58\xff\xff\xff\x2a\x00\x00\x00\x58\xff\xff\xff\x57\xff\xff\xff\xe9\x00\x00\x00\x58\xff\xff\xff\x57\xff\xff\xff\x57\xff\xff\xff\x57\xff\xff\xff\x57\xff\xff\xff\xb0\x00\x00\x00\x57\xff\xff\xff\x57\xff\xff\xff\x57\xff\xff\xff\x57\xff\xff\xff\x58\xff\xff\xff\xe9\x00\x00\x00\x57\xff\xff\xff\x29\x00\x00\x00\x57\xff\xff\xff\x57\xff\xff\xff\x57\xff\xff\xff\x57\xff\xff\xff\x57\xff\xff\xff\x83\x00\x00\x00\xa8\x00\x00\x00\x40\x00\x00\x00\x44\x00\x00\x00\x8d\x00\x00\x00\x57\xff\xff\xff\x34\x00\x00\x00\x57\xff\xff\xff\x86\x00\x00\x00\x85\x00\x00\x00\x17\x01\x00\x00\x18\x01\x00\x00\x57\xff\xff\xff\xed\x00\x00\x00\x28\x00\x00\x00\x57\xff\xff\xff\x57\xff\xff\xff\xe7\x00\x00\x00\x57\xff\xff\xff\x57\xff\xff\xff\x3f\x00\x00\x00\x57\xff\xff\xff\x57\xff\xff\xff\x28\x00\x00\x00\x57\xff\xff\xff\xea\x00\x00\x00\x28\x00\x00\x00\x58\xff\xff\xff\x43\x01\x00\x00\xe7\x00\x00\x00\x58\xff\xff\xff\x58\xff\xff\xff\x58\xff\xff\xff\x58\xff\xff\xff\x57\xff\xff\xff\x58\xff\xff\xff\x58\xff\xff\xff\x58\xff\xff\xff\x58\xff\xff\xff\x8f\x00\x00\x00\xec\x00\x00\x00\x58\xff\xff\xff\x28\x00\x00\x00\x58\xff\xff\xff\x58\xff\xff\xff\x58\xff\xff\xff\x58\xff\xff\xff\x58\xff\xff\xff\x90\x00\x00\x00\xec\x00\x00\x00\xed\x00\x00\x00\xef\x00\x00\x00\xec\x00\x00\x00\x58\xff\xff\xff\x1b\x01\x00\x00\x58\xff\xff\xff\x67\x00\x00\x00\x40\x00\x00\x00\x41\x00\x00\x00\xed\x00\x00\x00\x58\xff\xff\xff\x89\x00\x00\x00\xed\x00\x00\x00\x58\xff\xff\xff\x58\xff\xff\xff\x67\x00\x00\x00\x58\xff\xff\xff\x58\xff\xff\xff\x67\x00\x00\x00\x58\xff\xff\xff\x8a\x00\x00\x00\xe9\x00\x00\x00\x58\xff\xff\xff\x28\x00\x00\x00\x5e\x00\x00\x00\x78\x00\x00\x00\x39\x00\x00\x00\x30\x01\x00\x00\x60\x00\x00\x00\x3f\x00\x00\x00\xd3\x00\x00\x00\xe9\x00\x00\x00\x58\xff\xff\xff\x2c\x00\x00\x00\x3a\x00\x00\x00\x79\x00\x00\x00\xa8\x00\x00\x00\x7a\x00\x00\x00\x3b\x00\x00\x00\x3c\x00\x00\x00\x3d\x00\x00\x00\x31\x01\x00\x00\x3e\x00\x00\x00\x3f\x00\x00\x00\xd4\x00\x00\x00\x7b\x00\x00\x00\x7c\x00\x00\x00\x61\x00\x00\x00\x62\x00\x00\x00\x63\x00\x00\x00\x64\x00\x00\x00\x32\x00\x00\x00\xe9\x00\x00\x00\x65\x00\x00\x00\x19\x01\x00\x00\x7e\x00\x00\x00\x82\x00\x00\x00\x7f\x00\x00\x00\xe7\x00\x00\x00\xe2\x00\x00\x00\xe3\x00\x00\x00\x81\x00\x00\x00\x31\x00\x00\x00\x3d\x01\x00\x00\xe6\x00\x00\x00\xe4\x00\x00\x00\x40\x00\x00\x00\x90\x00\x00\x00\xe7\x00\x00\x00\x3b\x00\x00\x00\x3c\x00\x00\x00\x3d\x00\x00\x00\x28\x00\x00\x00\x3e\x00\x00\x00\x3f\x00\x00\x00\xdc\x00\x00\x00\x82\x00\x00\x00\x68\x00\x00\x00\x28\x00\x00\x00\x5e\x00\x00\x00\x78\x00\x00\x00\x62\x01\x00\x00\x14\x01\x00\x00\x60\x00\x00\x00\x4b\x00\x00\x00\x63\x01\x00\x00\x83\x00\x00\x00\xce\x00\x00\x00\xcf\x00\x00\x00\xe7\x00\x00\x00\x79\x00\x00\x00\xaf\x00\x00\x00\x7a\x00\x00\x00\x55\x01\x00\x00\x84\x00\x00\x00\x85\x00\x00\x00\x15\x01\x00\x00\xdd\x00\x00\x00\x57\x00\x00\x00\x4c\x00\x00\x00\x7b\x00\x00\x00\x7c\x00\x00\x00\x61\x00\x00\x00\x62\x00\x00\x00\x7d\x00\x00\x00\x64\x00\x00\x00\xd0\x00\x00\x00\x56\x01\x00\x00\x65\x00\x00\x00\x39\x01\x00\x00\x7e\x00\x00\x00\x98\xff\xff\xff\x7f\x00\x00\x00\xe5\x00\x00\x00\x80\x00\x00\x00\x68\x00\x00\x00\x81\x00\x00\x00\x28\x00\x00\x00\x5e\x00\x00\x00\x78\x00\x00\x00\x3a\x00\x00\x00\xa6\x00\x00\x00\x60\x00\x00\x00\x3a\x01\x00\x00\x3b\x00\x00\x00\x3c\x00\x00\x00\x3d\x00\x00\x00\x51\x01\x00\x00\x3e\x00\x00\x00\x3f\x00\x00\x00\x92\x00\x00\x00\x82\x00\x00\x00\x68\x00\x00\x00\xe9\x00\x00\x00\x30\x00\x00\x00\xbf\x00\x00\x00\x57\x00\x00\x00\xca\x00\x00\x00\x57\x00\x00\x00\x7b\x00\x00\x00\x7c\x00\x00\x00\x61\x00\x00\x00\x62\x00\x00\x00\x7d\x00\x00\x00\x64\x00\x00\x00\x31\x00\x00\x00\xe6\x00\x00\x00\x65\x00\x00\x00\xa8\x00\x00\x00\x7e\x00\x00\x00\xe7\x00\x00\x00\xdb\x00\x00\x00\x5d\xff\xff\xff\xdc\x00\x00\x00\x5d\xff\xff\xff\x81\x00\x00\x00\x28\x00\x00\x00\x5e\x00\x00\x00\x78\x00\x00\x00\x3a\x00\x00\x00\x11\x01\x00\x00\x60\x00\x00\x00\x86\x01\x00\x00\x3b\x00\x00\x00\x3c\x00\x00\x00\x3d\x00\x00\x00\x63\x01\x00\x00\x3e\x00\x00\x00\x3f\x00\x00\x00\xaf\x00\x00\x00\xe7\x00\x00\x00\x68\x00\x00\x00\xe9\x00\x00\x00\x4a\x00\x00\x00\x12\x01\x00\x00\xa9\x00\x00\x00\xaa\x00\x00\x00\x49\x00\x00\x00\x7b\x00\x00\x00\x7c\x00\x00\x00\x61\x00\x00\x00\x62\x00\x00\x00\x7d\x00\x00\x00\x64\x00\x00\x00\xa8\x00\x00\x00\x8a\x00\x00\x00\x65\x00\x00\x00\x8d\x00\x00\x00\x7e\x00\x00\x00\x8a\x00\x00\x00\xdb\x00\x00\x00\x8b\x00\x00\x00\x80\x00\x00\x00\x28\x00\x00\x00\x81\x00\x00\x00\x28\x00\x00\x00\x5e\x00\x00\x00\x5f\x00\x00\x00\x3a\x00\x00\x00\x28\x00\x00\x00\x60\x00\x00\x00\x8c\x01\x00\x00\x3b\x00\x00\x00\x3c\x00\x00\x00\x3d\x00\x00\x00\x63\x01\x00\x00\x3e\x00\x00\x00\x3f\x00\x00\x00\xf1\x00\x00\x00\xe7\x00\x00\x00\x68\x00\x00\x00\xa9\x00\x00\x00\x3b\x01\x00\x00\x68\x00\x00\x00\x25\x00\x00\x00\xf6\x00\x00\x00\x46\x00\x00\x00\xcc\x00\x00\x00\x68\x00\x00\x00\x61\x00\x00\x00\x62\x00\x00\x00\x7d\x00\x00\x00\x64\x00\x00\x00\x45\x00\x00\x00\x55\x00\x00\x00\x65\x00\x00\x00\xf0\x00\x00\x00\x31\x00\x00\x00\x28\x00\x00\x00\x5e\x00\x00\x00\x78\x00\x00\x00\xc1\x00\x00\x00\xe9\x00\x00\x00\x60\x00\x00\x00\x31\x00\x00\x00\xc2\x00\x00\x00\x57\x00\x00\x00\xcd\x00\x00\x00\xf7\x00\x00\x00\xf8\x00\x00\x00\xc1\x00\x00\x00\x57\x00\x00\x00\x93\xff\xff\xff\x28\x00\x00\x00\x5e\x00\x00\x00\x78\x00\x00\x00\x56\x00\x00\x00\x57\x00\x00\x00\x60\x00\x00\x00\x68\x00\x00\x00\x7b\x00\x00\x00\x7c\x00\x00\x00\x61\x00\x00\x00\x62\x00\x00\x00\x7d\x00\x00\x00\x64\x00\x00\x00\xd2\x00\x00\x00\x58\x00\x00\x00\x65\x00\x00\x00\xf5\x00\x00\x00\x5b\x00\x00\x00\x5c\x00\x00\x00\x25\x00\x00\x00\xf6\x00\x00\x00\xc1\x00\x00\x00\x7b\x00\x00\x00\x7c\x00\x00\x00\x61\x00\x00\x00\x62\x00\x00\x00\x7d\x00\x00\x00\x64\x00\x00\x00\x68\x00\x00\x00\xac\xff\xff\xff\x65\x00\x00\x00\xd1\x00\x00\x00\x28\x00\x00\x00\x5e\x00\x00\x00\x5f\x00\x00\x00\x28\x00\x00\x00\x01\x01\x00\x00\x60\x00\x00\x00\x68\x00\x00\x00\x68\x00\x00\x00\x28\x00\x00\x00\x5e\x00\x00\x00\x5f\x00\x00\x00\x5c\x01\x00\x00\xf8\x00\x00\x00\x60\x00\x00\x00\x24\x01\x00\x00\xca\x00\x00\x00\x0a\x01\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x57\x00\x00\x00\x80\x01\x00\x00\x25\x01\x00\x00\x68\x00\x00\x00\x81\x01\x00\x00\x61\x00\x00\x00\x62\x00\x00\x00\x63\x00\x00\x00\x64\x00\x00\x00\xbf\x00\x00\x00\x57\x00\x00\x00\x65\x00\x00\x00\xb4\x00\x00\x00\x61\x00\x00\x00\x62\x00\x00\x00\x63\x00\x00\x00\x64\x00\x00\x00\x66\x00\x00\x00\xe3\x00\x00\x00\x65\x00\x00\x00\xbd\x00\x00\x00\xb2\x00\x00\x00\xbe\x00\x00\x00\x67\x00\x00\x00\xdc\x00\x00\x00\x66\x00\x00\x00\xb3\x00\x00\x00\x28\x00\x00\x00\x5e\x00\x00\x00\x5f\x00\x00\x00\x28\x00\x00\x00\x67\x00\x00\x00\x60\x00\x00\x00\x68\x00\x00\x00\x8a\x00\x00\x00\x68\x00\x00\x00\xac\x00\x00\x00\x28\x00\x00\x00\x68\x00\x00\x00\xaf\x00\x00\x00\x28\x00\x00\x00\x5e\x00\x00\x00\x5f\x00\x00\x00\x68\x00\x00\x00\x28\x00\x00\x00\x60\x00\x00\x00\xdd\x00\x00\x00\x57\x00\x00\x00\x8a\x00\x00\x00\xdf\x00\x00\x00\xa6\x00\x00\x00\x61\x00\x00\x00\x62\x00\x00\x00\x7d\x00\x00\x00\x64\x00\x00\x00\xf2\x00\x00\x00\x57\x00\x00\x00\x65\x00\x00\x00\xff\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x57\x00\x00\x00\x70\x01\x00\x00\xc1\x00\x00\x00\x61\x00\x00\x00\x62\x00\x00\x00\x63\x00\x00\x00\x64\x00\x00\x00\x28\x00\x00\x00\x25\x01\x00\x00\x65\x00\x00\x00\xc7\x00\x00\x00\x28\x00\x00\x00\x5e\x00\x00\x00\x5f\x00\x00\x00\xae\x00\x00\x00\x66\x00\x00\x00\x60\x00\x00\x00\x9e\x00\x00\x00\x3a\x00\x00\x00\x9f\x00\x00\x00\x68\x00\x00\x00\x67\x00\x00\x00\x3b\x00\x00\x00\x3c\x00\x00\x00\x3d\x00\x00\x00\xac\x00\x00\x00\x3e\x00\x00\x00\x3f\x00\x00\x00\xa6\x00\x00\x00\x8a\x00\x00\x00\x8a\x00\x00\x00\x1f\x01\x00\x00\x6d\x01\x00\x00\x68\x00\x00\x00\xa5\x00\x00\x00\x61\x00\x00\x00\x62\x00\x00\x00\x7d\x00\x00\x00\x64\x00\x00\x00\x28\x00\x00\x00\x55\x00\x00\x00\x65\x00\x00\x00\x58\xff\xff\xff\x11\x00\x00\x00\x12\x00\x00\x00\x13\x00\x00\x00\x14\x00\x00\x00\xc1\x00\x00\x00\x15\x00\x00\x00\x16\x00\x00\x00\x17\x00\x00\x00\x18\x00\x00\x00\x2d\x00\x00\x00\x2e\x00\x00\x00\x03\x00\x00\x00\x02\x00\x00\x00\x19\x00\x00\x00\x1a\x00\x00\x00\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\xa3\x00\x00\x00\x56\x00\x00\x00\x57\x00\x00\x00\x2e\x01\x00\x00\x68\x00\x00\x00\xb4\x00\x00\x00\xb5\x00\x00\x00\x58\xff\xff\xff\x25\x00\x00\x00\x26\x00\x00\x00\x2f\x01\x00\x00\x57\x01\x00\x00\x58\x00\x00\x00\x59\x00\x00\x00\x5a\x00\x00\x00\x5b\x00\x00\x00\x5c\x00\x00\x00\x58\xff\xff\xff\x58\xff\xff\xff\x2c\x01\x00\x00\x58\xff\xff\xff\x25\x00\x00\x00\x4c\x00\x00\x00\x58\xff\xff\xff\x2d\x01\x00\x00\x31\x01\x00\x00\x25\x00\x00\x00\xb6\x00\x00\x00\x28\x01\x00\x00\xfa\x00\x00\x00\x27\x01\x00\x00\x22\x01\x00\x00\x69\x00\x00\x00\x6a\x00\x00\x00\xfe\xff\xff\xff\x6b\x00\x00\x00\x9b\x00\x00\x00\x6c\x00\x00\x00\x6d\x00\x00\x00\x6e\x00\x00\x00\x6f\x00\x00\x00\x28\x00\x00\x00\x1f\x01\x00\x00\x70\x00\x00\x00\xb9\x00\x00\x00\xba\x00\x00\x00\x9d\x00\x00\x00\x72\x00\x00\x00\x73\x00\x00\x00\x74\x00\x00\x00\x75\x00\x00\x00\xdf\x00\x00\x00\x57\x00\x00\x00\x93\x00\x00\x00\x94\x00\x00\x00\x1e\x01\x00\x00\x28\x00\x00\x00\x19\x01\x00\x00\x95\x00\x00\x00\x96\x00\x00\x00\x6e\x00\x00\x00\x6f\x00\x00\x00\x58\x00\x00\x00\xe0\x00\x00\x00\x5a\x00\x00\x00\x5b\x00\x00\x00\x5c\x00\x00\x00\x55\x00\x00\x00\x1c\x01\x00\x00\x16\x01\x00\x00\x69\x00\x00\x00\x6a\x00\x00\x00\x55\x00\x00\x00\x6b\x00\x00\x00\x13\x01\x00\x00\x6c\x00\x00\x00\x6d\x00\x00\x00\x6e\x00\x00\x00\x6f\x00\x00\x00\xc4\xff\xff\xff\x0e\x01\x00\x00\x70\x00\x00\x00\xb9\x00\x00\x00\xc8\x00\x00\x00\x9d\x00\x00\x00\x72\x00\x00\x00\x73\x00\x00\x00\x74\x00\x00\x00\x75\x00\x00\x00\xdf\x00\x00\x00\x57\x00\x00\x00\x55\x00\x00\x00\x10\x01\x00\x00\x28\x00\x00\x00\x56\x00\x00\x00\x57\x00\x00\x00\x55\x00\x00\x00\x28\x00\x00\x00\xa3\x00\x00\x00\x81\x00\x00\x00\x58\x00\x00\x00\xe0\x00\x00\x00\x5a\x00\x00\x00\x5b\x00\x00\x00\x5c\x00\x00\x00\x58\x00\x00\x00\xe0\x00\x00\x00\x5a\x00\x00\x00\x5b\x00\x00\x00\x5c\x00\x00\x00\x96\xff\xff\xff\xf1\x00\x00\x00\xfc\x00\x00\x00\x56\x00\x00\x00\x57\x00\x00\x00\x93\x00\x00\x00\x94\x00\x00\x00\xfa\x00\x00\x00\x56\x00\x00\x00\x57\x00\x00\x00\xa3\x00\x00\x00\x96\x00\x00\x00\x6e\x00\x00\x00\x6f\x00\x00\x00\x58\x00\x00\x00\xf4\x00\x00\x00\x5a\x00\x00\x00\x5b\x00\x00\x00\x5c\x00\x00\x00\x58\x00\x00\x00\x28\x00\x00\x00\x46\x01\x00\x00\x5b\x00\x00\x00\x5c\x00\x00\x00\x11\x00\x00\x00\x12\x00\x00\x00\x13\x00\x00\x00\x14\x00\x00\x00\x5a\x01\x00\x00\x15\x00\x00\x00\x16\x00\x00\x00\x17\x00\x00\x00\x18\x00\x00\x00\x5b\x01\x00\x00\x59\x01\x00\x00\x53\x01\x00\x00\x98\xff\xff\xff\x19\x00\x00\x00\x1a\x00\x00\x00\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x11\x00\x00\x00\x12\x00\x00\x00\x13\x00\x00\x00\x14\x00\x00\x00\x54\x01\x00\x00\x15\x00\x00\x00\x16\x00\x00\x00\x17\x00\x00\x00\x18\x00\x00\x00\x52\x01\x00\x00\x28\x00\x00\x00\x97\xff\xff\xff\x88\x00\x00\x00\x19\x00\x00\x00\x1a\x00\x00\x00\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x11\x00\x00\x00\x12\x00\x00\x00\x13\x00\x00\x00\x14\x00\x00\x00\x28\x00\x00\x00\x15\x00\x00\x00\x16\x00\x00\x00\x17\x00\x00\x00\x18\x00\x00\x00\x40\x01\x00\x00\x43\x01\x00\x00\x41\x01\x00\x00\x55\x00\x00\x00\x19\x00\x00\x00\x1a\x00\x00\x00\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x11\x00\x00\x00\x12\x00\x00\x00\x13\x00\x00\x00\x14\x00\x00\x00\x28\x00\x00\x00\x15\x00\x00\x00\x16\x00\x00\x00\x17\x00\x00\x00\x18\x00\x00\x00\x40\x01\x00\x00\x3d\x01\x00\x00\x28\x00\x00\x00\x54\x00\x00\x00\x19\x00\x00\x00\x1a\x00\x00\x00\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x11\x00\x00\x00\x12\x00\x00\x00\x13\x00\x00\x00\x14\x00\x00\x00\x38\x01\x00\x00\x15\x00\x00\x00\x16\x00\x00\x00\x17\x00\x00\x00\x18\x00\x00\x00\x78\x01\x00\x00\x77\x01\x00\x00\x76\x01\x00\x00\x53\x00\x00\x00\x19\x00\x00\x00\x1a\x00\x00\x00\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x11\x00\x00\x00\x12\x00\x00\x00\x13\x00\x00\x00\x14\x00\x00\x00\x75\x01\x00\x00\x15\x00\x00\x00\x16\x00\x00\x00\x17\x00\x00\x00\x18\x00\x00\x00\x71\x01\x00\x00\x28\x00\x00\x00\x6d\x01\x00\x00\x52\x00\x00\x00\x19\x00\x00\x00\x1a\x00\x00\x00\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x11\x00\x00\x00\x12\x00\x00\x00\x13\x00\x00\x00\x14\x00\x00\x00\x6c\x01\x00\x00\x15\x00\x00\x00\x16\x00\x00\x00\x17\x00\x00\x00\x18\x00\x00\x00\x6b\x01\x00\x00\x6a\x01\x00\x00\x25\x00\x00\x00\x5e\x01\x00\x00\x19\x00\x00\x00\x1a\x00\x00\x00\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x11\x00\x00\x00\x12\x00\x00\x00\x13\x00\x00\x00\x14\x00\x00\x00\x69\x01\x00\x00\x15\x00\x00\x00\x16\x00\x00\x00\x17\x00\x00\x00\x18\x00\x00\x00\x68\x01\x00\x00\x67\x01\x00\x00\x23\x00\x00\x00\x28\x00\x00\x00\x19\x00\x00\x00\x1a\x00\x00\x00\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x11\x00\x00\x00\x12\x00\x00\x00\x13\x00\x00\x00\x14\x00\x00\x00\xc3\x00\x00\x00\x15\x00\x00\x00\x16\x00\x00\x00\x17\x00\x00\x00\x18\x00\x00\x00\x35\x00\x00\x00\x66\x01\x00\x00\x21\x00\x00\x00\xc4\x00\x00\x00\x19\x00\x00\x00\x1a\x00\x00\x00\x1b\x00\x00\x00\x1c\x00\x00\x00\x1d\x00\x00\x00\x85\x01\x00\x00\x84\x01\x00\x00\x83\x01\x00\x00\x37\x00\x00\x00\xc5\x00\x00\x00\x82\x01\x00\x00\x9a\x00\x00\x00\x40\x01\x00\x00\x7f\x01\x00\x00\x69\x00\x00\x00\x6a\x00\x00\x00\x1f\x00\x00\x00\x6b\x00\x00\x00\x9b\x00\x00\x00\x6c\x00\x00\x00\x6d\x00\x00\x00\x6e\x00\x00\x00\x6f\x00\x00\x00\x7b\x01\x00\x00\x7a\x01\x00\x00\x70\x00\x00\x00\xb9\x00\x00\x00\xba\x00\x00\x00\x9d\x00\x00\x00\x72\x00\x00\x00\x73\x00\x00\x00\x74\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x57\x00\x00\x00\xfc\x00\x00\x00\x79\x01\x00\x00\x89\x01\x00\x00\x69\x00\x00\x00\x6a\x00\x00\x00\x88\x01\x00\x00\x6b\x00\x00\x00\xfd\x00\x00\x00\x6c\x00\x00\x00\x6d\x00\x00\x00\x6e\x00\x00\x00\x6f\x00\x00\x00\x8c\x01\x00\x00\xbd\xff\xff\xff\x70\x00\x00\x00\xb9\x00\x00\x00\xba\x00\x00\x00\x9d\x00\x00\x00\x72\x00\x00\x00\x73\x00\x00\x00\x74\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x57\x00\x00\x00\x28\x01\x00\x00\xbc\xff\xff\xff\xbb\xff\xff\xff\x69\x00\x00\x00\x6a\x00\x00\x00\x8a\x01\x00\x00\x6b\x00\x00\x00\x29\x01\x00\x00\x6c\x00\x00\x00\x6d\x00\x00\x00\x6e\x00\x00\x00\x6f\x00\x00\x00\x02\x00\x00\x00\x50\x00\x00\x00\x70\x00\x00\x00\xb9\x00\x00\x00\xba\x00\x00\x00\x9d\x00\x00\x00\x72\x00\x00\x00\x73\x00\x00\x00\x74\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x57\x00\x00\x00\x68\x00\x00\x00\x4f\x00\x00\x00\x4e\x00\x00\x00\x69\x00\x00\x00\x6a\x00\x00\x00\x4d\x00\x00\x00\x6b\x00\x00\x00\x47\x00\x00\x00\x6c\x00\x00\x00\x6d\x00\x00\x00\x6e\x00\x00\x00\x6f\x00\x00\x00\x99\x00\x00\x00\x92\x00\x00\x00\x70\x00\x00\x00\xe4\x00\x00\x00\xc8\x00\x00\x00\x9d\x00\x00\x00\x72\x00\x00\x00\x73\x00\x00\x00\x74\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x57\x00\x00\x00\x68\x00\x00\x00\xa1\x00\x00\x00\x99\x00\x00\x00\x69\x00\x00\x00\x6a\x00\x00\x00\x0c\x01\x00\x00\x6b\x00\x00\x00\x0b\x01\x00\x00\x6c\x00\x00\x00\x6d\x00\x00\x00\x6e\x00\x00\x00\x6f\x00\x00\x00\x09\x01\x00\x00\x02\x01\x00\x00\x70\x00\x00\x00\xc7\x00\x00\x00\xc8\x00\x00\x00\x9d\x00\x00\x00\x72\x00\x00\x00\x73\x00\x00\x00\x74\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x57\x00\x00\x00\x9a\x00\x00\x00\x01\x01\x00\x00\xf3\x00\x00\x00\x69\x00\x00\x00\x6a\x00\x00\x00\x4e\x01\x00\x00\x6b\x00\x00\x00\x9b\x00\x00\x00\x6c\x00\x00\x00\x6d\x00\x00\x00\x6e\x00\x00\x00\x6f\x00\x00\x00\x44\x01\x00\x00\x3e\x01\x00\x00\x70\x00\x00\x00\x7c\x01\x00\x00\x9c\x00\x00\x00\x9d\x00\x00\x00\x72\x00\x00\x00\x73\x00\x00\x00\x74\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x57\x00\x00\x00\x28\x01\x00\x00\x7b\x01\x00\x00\x00\x00\x00\x00\x69\x00\x00\x00\x6a\x00\x00\x00\x00\x00\x00\x00\x6b\x00\x00\x00\x29\x01\x00\x00\x6c\x00\x00\x00\x6d\x00\x00\x00\x6e\x00\x00\x00\x6f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x70\x00\x00\x00\x00\x00\x00\x00\x9c\x00\x00\x00\x9d\x00\x00\x00\x72\x00\x00\x00\x73\x00\x00\x00\x74\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x57\x00\x00\x00\x68\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x69\x00\x00\x00\x6a\x00\x00\x00\x00\x00\x00\x00\x6b\x00\x00\x00\x00\x00\x00\x00\x6c\x00\x00\x00\x6d\x00\x00\x00\x6e\x00\x00\x00\x6f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x70\x00\x00\x00\xb9\x00\x00\x00\xc8\x00\x00\x00\x9d\x00\x00\x00\x72\x00\x00\x00\x73\x00\x00\x00\x74\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x57\x00\x00\x00\x68\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x69\x00\x00\x00\x6a\x00\x00\x00\x00\x00\x00\x00\x6b\x00\x00\x00\x00\x00\x00\x00\x6c\x00\x00\x00\x6d\x00\x00\x00\x6e\x00\x00\x00\x6f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x70\x00\x00\x00\x4f\x01\x00\x00\xc8\x00\x00\x00\x9d\x00\x00\x00\x72\x00\x00\x00\x73\x00\x00\x00\x74\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x57\x00\x00\x00\x68\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x69\x00\x00\x00\x6a\x00\x00\x00\x00\x00\x00\x00\x6b\x00\x00\x00\x00\x00\x00\x00\x6c\x00\x00\x00\x6d\x00\x00\x00\x6e\x00\x00\x00\x6f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x70\x00\x00\x00\x47\x01\x00\x00\xc8\x00\x00\x00\x9d\x00\x00\x00\x72\x00\x00\x00\x73\x00\x00\x00\x74\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x57\x00\x00\x00\x68\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x69\x00\x00\x00\x6a\x00\x00\x00\x00\x00\x00\x00\x6b\x00\x00\x00\x00\x00\x00\x00\x6c\x00\x00\x00\x6d\x00\x00\x00\x6e\x00\x00\x00\x6f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x70\x00\x00\x00\x45\x01\x00\x00\xc8\x00\x00\x00\x9d\x00\x00\x00\x72\x00\x00\x00\x73\x00\x00\x00\x74\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x57\x00\x00\x00\x68\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x69\x00\x00\x00\x6a\x00\x00\x00\x00\x00\x00\x00\x6b\x00\x00\x00\x00\x00\x00\x00\x6c\x00\x00\x00\x6d\x00\x00\x00\x6e\x00\x00\x00\x6f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x70\x00\x00\x00\x36\x01\x00\x00\xc8\x00\x00\x00\x9d\x00\x00\x00\x72\x00\x00\x00\x73\x00\x00\x00\x74\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x57\x00\x00\x00\x68\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x69\x00\x00\x00\x6a\x00\x00\x00\x00\x00\x00\x00\x6b\x00\x00\x00\x00\x00\x00\x00\x6c\x00\x00\x00\x6d\x00\x00\x00\x6e\x00\x00\x00\x6f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x70\x00\x00\x00\x5b\x01\x00\x00\xc8\x00\x00\x00\x9d\x00\x00\x00\x72\x00\x00\x00\x73\x00\x00\x00\x74\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x57\x00\x00\x00\x68\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x69\x00\x00\x00\x6a\x00\x00\x00\x00\x00\x00\x00\x6b\x00\x00\x00\x00\x00\x00\x00\x6c\x00\x00\x00\x6d\x00\x00\x00\x6e\x00\x00\x00\x6f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x70\x00\x00\x00\x85\x01\x00\x00\xc8\x00\x00\x00\x9d\x00\x00\x00\x72\x00\x00\x00\x73\x00\x00\x00\x74\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x57\x00\x00\x00\xbb\x00\x00\x00\x00\x00\x00\x00\x9f\x00\x00\x00\x69\x00\x00\x00\x6a\x00\x00\x00\x00\x00\x00\x00\x6b\x00\x00\x00\x00\x00\x00\x00\x6c\x00\x00\x00\x6d\x00\x00\x00\x6e\x00\x00\x00\x6f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x70\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xbc\x00\x00\x00\x72\x00\x00\x00\x73\x00\x00\x00\x74\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x57\x00\x00\x00\x68\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x69\x00\x00\x00\x6a\x00\x00\x00\xb7\x00\x00\x00\x6b\x00\x00\x00\x00\x00\x00\x00\x6c\x00\x00\x00\x6d\x00\x00\x00\x6e\x00\x00\x00\x6f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x70\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xb8\x00\x00\x00\x72\x00\x00\x00\x73\x00\x00\x00\x74\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x57\x00\x00\x00\xbb\x00\x00\x00\x00\x00\x00\x00\x9f\x00\x00\x00\x69\x00\x00\x00\x6a\x00\x00\x00\x00\x00\x00\x00\x6b\x00\x00\x00\x00\x00\x00\x00\x6c\x00\x00\x00\x6d\x00\x00\x00\x6e\x00\x00\x00\x6f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x70\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xfe\x00\x00\x00\x72\x00\x00\x00\x73\x00\x00\x00\x74\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x57\x00\x00\x00\x68\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x69\x00\x00\x00\x6a\x00\x00\x00\x48\x01\x00\x00\x6b\x00\x00\x00\x00\x00\x00\x00\x6c\x00\x00\x00\x6d\x00\x00\x00\x6e\x00\x00\x00\x6f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x70\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xb8\x00\x00\x00\x72\x00\x00\x00\x73\x00\x00\x00\x74\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x57\x00\x00\x00\x68\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x69\x00\x00\x00\x6a\x00\x00\x00\x00\x00\x00\x00\x6b\x00\x00\x00\x00\x00\x00\x00\x6c\x00\x00\x00\x6d\x00\x00\x00\x6e\x00\x00\x00\x6f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x70\x00\x00\x00\x00\x00\x00\x00\x34\x01\x00\x00\x9d\x00\x00\x00\x72\x00\x00\x00\x73\x00\x00\x00\x74\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x57\x00\x00\x00\x68\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x69\x00\x00\x00\x6a\x00\x00\x00\x00\x00\x00\x00\x6b\x00\x00\x00\x00\x00\x00\x00\x6c\x00\x00\x00\x6d\x00\x00\x00\x6e\x00\x00\x00\x6f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x70\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x71\x00\x00\x00\x72\x00\x00\x00\x73\x00\x00\x00\x74\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x57\x00\x00\x00\x68\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x69\x00\x00\x00\x6a\x00\x00\x00\x00\x00\x00\x00\x6b\x00\x00\x00\x00\x00\x00\x00\x6c\x00\x00\x00\x6d\x00\x00\x00\x6e\x00\x00\x00\x6f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x70\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xaf\x00\x00\x00\x72\x00\x00\x00\x73\x00\x00\x00\x74\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x57\x00\x00\x00\x68\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x69\x00\x00\x00\x6a\x00\x00\x00\x00\x00\x00\x00\x6b\x00\x00\x00\x00\x00\x00\x00\x6c\x00\x00\x00\x6d\x00\x00\x00\x6e\x00\x00\x00\x6f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x70\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa7\x00\x00\x00\x72\x00\x00\x00\x73\x00\x00\x00\x74\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x57\x00\x00\x00\x68\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x69\x00\x00\x00\x6a\x00\x00\x00\x00\x00\x00\x00\x6b\x00\x00\x00\x00\x00\x00\x00\x6c\x00\x00\x00\x6d\x00\x00\x00\x6e\x00\x00\x00\x6f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x70\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x2a\x01\x00\x00\x72\x00\x00\x00\x73\x00\x00\x00\x74\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x57\x00\x00\x00\x68\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x69\x00\x00\x00\x6a\x00\x00\x00\x00\x00\x00\x00\x6b\x00\x00\x00\x00\x00\x00\x00\x6c\x00\x00\x00\x6d\x00\x00\x00\x6e\x00\x00\x00\x6f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x70\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x22\x01\x00\x00\x72\x00\x00\x00\x73\x00\x00\x00\x74\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x57\x00\x00\x00\x68\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x69\x00\x00\x00\x6a\x00\x00\x00\x00\x00\x00\x00\x6b\x00\x00\x00\x00\x00\x00\x00\x6c\x00\x00\x00\x6d\x00\x00\x00\x6e\x00\x00\x00\x6f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x70\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x01\x00\x00\x72\x00\x00\x00\x73\x00\x00\x00\x74\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x57\x00\x00\x00\x68\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x69\x00\x00\x00\x6a\x00\x00\x00\x00\x00\x00\x00\x6b\x00\x00\x00\x00\x00\x00\x00\x6c\x00\x00\x00\x6d\x00\x00\x00\x6e\x00\x00\x00\x6f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x70\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x01\x00\x00\x72\x00\x00\x00\x73\x00\x00\x00\x74\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x57\x00\x00\x00\x68\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x69\x00\x00\x00\x6a\x00\x00\x00\x00\x00\x00\x00\x6b\x00\x00\x00\x00\x00\x00\x00\x6c\x00\x00\x00\x6d\x00\x00\x00\x6e\x00\x00\x00\x6f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x70\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x07\x01\x00\x00\x72\x00\x00\x00\x73\x00\x00\x00\x74\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x57\x00\x00\x00\x68\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x69\x00\x00\x00\x6a\x00\x00\x00\x00\x00\x00\x00\x6b\x00\x00\x00\x00\x00\x00\x00\x6c\x00\x00\x00\x6d\x00\x00\x00\x6e\x00\x00\x00\x6f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x70\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x01\x00\x00\x72\x00\x00\x00\x73\x00\x00\x00\x74\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x57\x00\x00\x00\x68\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x69\x00\x00\x00\x6a\x00\x00\x00\x00\x00\x00\x00\x6b\x00\x00\x00\x00\x00\x00\x00\x6c\x00\x00\x00\x6d\x00\x00\x00\x6e\x00\x00\x00\x6f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x70\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x03\x01\x00\x00\x72\x00\x00\x00\x73\x00\x00\x00\x74\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x57\x00\x00\x00\x68\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x69\x00\x00\x00\x6a\x00\x00\x00\x00\x00\x00\x00\x6b\x00\x00\x00\x00\x00\x00\x00\x6c\x00\x00\x00\x6d\x00\x00\x00\x6e\x00\x00\x00\x6f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x70\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x57\x01\x00\x00\x72\x00\x00\x00\x73\x00\x00\x00\x74\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x57\x00\x00\x00\x68\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x69\x00\x00\x00\x6a\x00\x00\x00\x00\x00\x00\x00\x6b\x00\x00\x00\x00\x00\x00\x00\x6c\x00\x00\x00\x6d\x00\x00\x00\x6e\x00\x00\x00\x6f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x70\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x4d\x01\x00\x00\x72\x00\x00\x00\x73\x00\x00\x00\x74\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x57\x00\x00\x00\x68\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x69\x00\x00\x00\x6a\x00\x00\x00\x00\x00\x00\x00\x6b\x00\x00\x00\x00\x00\x00\x00\x6c\x00\x00\x00\x6d\x00\x00\x00\x6e\x00\x00\x00\x6f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x70\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x4c\x01\x00\x00\x72\x00\x00\x00\x73\x00\x00\x00\x74\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x57\x00\x00\x00\x68\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x69\x00\x00\x00\x6a\x00\x00\x00\x00\x00\x00\x00\x6b\x00\x00\x00\x00\x00\x00\x00\x6c\x00\x00\x00\x6d\x00\x00\x00\x6e\x00\x00\x00\x6f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x70\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x4b\x01\x00\x00\x72\x00\x00\x00\x73\x00\x00\x00\x74\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x57\x00\x00\x00\x68\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x69\x00\x00\x00\x6a\x00\x00\x00\x00\x00\x00\x00\x6b\x00\x00\x00\x00\x00\x00\x00\x6c\x00\x00\x00\x6d\x00\x00\x00\x6e\x00\x00\x00\x6f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x70\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x4a\x01\x00\x00\x72\x00\x00\x00\x73\x00\x00\x00\x74\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x57\x00\x00\x00\x68\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x69\x00\x00\x00\x6a\x00\x00\x00\x00\x00\x00\x00\x6b\x00\x00\x00\x00\x00\x00\x00\x6c\x00\x00\x00\x6d\x00\x00\x00\x6e\x00\x00\x00\x6f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x70\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x49\x01\x00\x00\x72\x00\x00\x00\x73\x00\x00\x00\x74\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x57\x00\x00\x00\x68\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x69\x00\x00\x00\x6a\x00\x00\x00\x00\x00\x00\x00\x6b\x00\x00\x00\x00\x00\x00\x00\x6c\x00\x00\x00\x6d\x00\x00\x00\x6e\x00\x00\x00\x6f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x70\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x41\x01\x00\x00\x72\x00\x00\x00\x73\x00\x00\x00\x74\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x57\x00\x00\x00\x68\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x69\x00\x00\x00\x6a\x00\x00\x00\x00\x00\x00\x00\x6b\x00\x00\x00\x00\x00\x00\x00\x6c\x00\x00\x00\x6d\x00\x00\x00\x6e\x00\x00\x00\x6f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x70\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x3a\x01\x00\x00\x72\x00\x00\x00\x73\x00\x00\x00\x74\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x57\x00\x00\x00\x68\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x69\x00\x00\x00\x6a\x00\x00\x00\x00\x00\x00\x00\x6b\x00\x00\x00\x00\x00\x00\x00\x6c\x00\x00\x00\x6d\x00\x00\x00\x6e\x00\x00\x00\x6f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x70\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x35\x01\x00\x00\x72\x00\x00\x00\x73\x00\x00\x00\x74\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x57\x00\x00\x00\x68\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x69\x00\x00\x00\x6a\x00\x00\x00\x00\x00\x00\x00\x6b\x00\x00\x00\x00\x00\x00\x00\x6c\x00\x00\x00\x6d\x00\x00\x00\x6e\x00\x00\x00\x6f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x70\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x33\x01\x00\x00\x72\x00\x00\x00\x73\x00\x00\x00\x74\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x57\x00\x00\x00\x68\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x69\x00\x00\x00\x6a\x00\x00\x00\x00\x00\x00\x00\x6b\x00\x00\x00\x00\x00\x00\x00\x6c\x00\x00\x00\x6d\x00\x00\x00\x6e\x00\x00\x00\x6f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x70\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x32\x01\x00\x00\x72\x00\x00\x00\x73\x00\x00\x00\x74\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x57\x00\x00\x00\x68\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x69\x00\x00\x00\x6a\x00\x00\x00\x00\x00\x00\x00\x6b\x00\x00\x00\x00\x00\x00\x00\x6c\x00\x00\x00\x6d\x00\x00\x00\x6e\x00\x00\x00\x6f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x70\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x31\x01\x00\x00\x72\x00\x00\x00\x73\x00\x00\x00\x74\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x57\x00\x00\x00\x68\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x69\x00\x00\x00\x6a\x00\x00\x00\x00\x00\x00\x00\x6b\x00\x00\x00\x00\x00\x00\x00\x6c\x00\x00\x00\x6d\x00\x00\x00\x6e\x00\x00\x00\x6f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x70\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x73\x01\x00\x00\x72\x00\x00\x00\x73\x00\x00\x00\x74\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x57\x00\x00\x00\x68\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x69\x00\x00\x00\x6a\x00\x00\x00\x00\x00\x00\x00\x6b\x00\x00\x00\x00\x00\x00\x00\x6c\x00\x00\x00\x6d\x00\x00\x00\x6e\x00\x00\x00\x6f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x70\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x72\x01\x00\x00\x72\x00\x00\x00\x73\x00\x00\x00\x74\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x57\x00\x00\x00\x68\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x69\x00\x00\x00\x6a\x00\x00\x00\x00\x00\x00\x00\x6b\x00\x00\x00\x00\x00\x00\x00\x6c\x00\x00\x00\x6d\x00\x00\x00\x6e\x00\x00\x00\x6f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x70\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x71\x01\x00\x00\x72\x00\x00\x00\x73\x00\x00\x00\x74\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x57\x00\x00\x00\x68\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x69\x00\x00\x00\x6a\x00\x00\x00\x00\x00\x00\x00\x6b\x00\x00\x00\x00\x00\x00\x00\x6c\x00\x00\x00\x6d\x00\x00\x00\x6e\x00\x00\x00\x6f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x70\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x6e\x01\x00\x00\x72\x00\x00\x00\x73\x00\x00\x00\x74\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x57\x00\x00\x00\x68\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x69\x00\x00\x00\x6a\x00\x00\x00\x00\x00\x00\x00\x6b\x00\x00\x00\x00\x00\x00\x00\x6c\x00\x00\x00\x6d\x00\x00\x00\x6e\x00\x00\x00\x6f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x70\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x64\x01\x00\x00\x72\x00\x00\x00\x73\x00\x00\x00\x74\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x57\x00\x00\x00\x68\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x69\x00\x00\x00\x6a\x00\x00\x00\x00\x00\x00\x00\x6b\x00\x00\x00\x00\x00\x00\x00\x6c\x00\x00\x00\x6d\x00\x00\x00\x6e\x00\x00\x00\x6f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x70\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x61\x01\x00\x00\x72\x00\x00\x00\x73\x00\x00\x00\x74\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x57\x00\x00\x00\x68\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x69\x00\x00\x00\x6a\x00\x00\x00\x00\x00\x00\x00\x6b\x00\x00\x00\x00\x00\x00\x00\x6c\x00\x00\x00\x6d\x00\x00\x00\x6e\x00\x00\x00\x6f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x70\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x60\x01\x00\x00\x72\x00\x00\x00\x73\x00\x00\x00\x74\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x57\x00\x00\x00\x68\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x69\x00\x00\x00\x6a\x00\x00\x00\x00\x00\x00\x00\x6b\x00\x00\x00\x00\x00\x00\x00\x6c\x00\x00\x00\x6d\x00\x00\x00\x6e\x00\x00\x00\x6f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x70\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x5f\x01\x00\x00\x72\x00\x00\x00\x73\x00\x00\x00\x74\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x57\x00\x00\x00\x68\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x69\x00\x00\x00\x6a\x00\x00\x00\x00\x00\x00\x00\x6b\x00\x00\x00\x00\x00\x00\x00\x6c\x00\x00\x00\x6d\x00\x00\x00\x6e\x00\x00\x00\x6f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x70\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x32\x01\x00\x00\x72\x00\x00\x00\x73\x00\x00\x00\x74\x00\x00\x00\x75\x00\x00\x00\x5e\x01\x00\x00\x57\x00\x00\x00\x68\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x69\x00\x00\x00\x6a\x00\x00\x00\x00\x00\x00\x00\x6b\x00\x00\x00\x00\x00\x00\x00\x6c\x00\x00\x00\x6d\x00\x00\x00\x6e\x00\x00\x00\x6f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x70\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x7d\x01\x00\x00\x72\x00\x00\x00\x73\x00\x00\x00\x74\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x57\x00\x00\x00\x68\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x69\x00\x00\x00\x6a\x00\x00\x00\x00\x00\x00\x00\x6b\x00\x00\x00\x00\x00\x00\x00\x6c\x00\x00\x00\x6d\x00\x00\x00\x6e\x00\x00\x00\x6f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x70\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x8a\x01\x00\x00\x72\x00\x00\x00\x73\x00\x00\x00\x74\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x57\x00\x00\x00\x68\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x69\x00\x00\x00\x6a\x00\x00\x00\x00\x00\x00\x00\x6b\x00\x00\x00\x00\x00\x00\x00\x6c\x00\x00\x00\x6d\x00\x00\x00\x6e\x00\x00\x00\x6f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x70\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x8d\x01\x00\x00\x72\x00\x00\x00\x73\x00\x00\x00\x74\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x57\x00\x00\x00\x68\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xd4\x00\x00\x00\xd5\x00\x00\x00\x00\x00\x00\x00\xd6\x00\x00\x00\x00\x00\x00\x00\x34\x00\x00\x00\xd7\x00\x00\x00\x6e\x00\x00\x00\x6f\x00\x00\x00\x00\x00\x00\x00\x35\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x36\x00\x00\x00\x00\x00\x00\x00\xd8\x00\x00\x00\x73\x00\x00\x00\xd9\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x57\x00\x00\x00\x68\x00\x00\x00\x37\x00\x00\x00\x00\x00\x00\x00\xd4\x00\x00\x00\xd5\x00\x00\x00\x00\x00\x00\x00\xd6\x00\x00\x00\x93\x00\x00\x00\x94\x00\x00\x00\xd7\x00\x00\x00\x6e\x00\x00\x00\x6f\x00\x00\x00\xa0\x00\x00\x00\x96\x00\x00\x00\x6e\x00\x00\x00\x6f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x01\x00\x00\x73\x00\x00\x00\x05\x01\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x57\x00\x00\x00\xd3\x00\x00\x00\x00\x00\x00\x00\x7e\x00\x00\x00\x00\x00\x00\x00\x98\x00\x00\x00\x00\x00\x00\x00\x99\x00\x00\x00\x00\x00\x00\x00\x81\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x3a\x00\x00\x00\xa8\xff\xff\xff\xd4\x00\x00\x00\x00\x00\x00\x00\x3b\x00\x00\x00\x3c\x00\x00\x00\x3d\x00\x00\x00\x00\x00\x00\x00\x3e\x00\x00\x00\x3f\x00\x00\x00\x7e\x00\x00\x00\x00\x00\x00\x00\x98\x00\x00\x00\x00\x00\x00\x00\x99\x00\x00\x00\x00\x00\x00\x00\x81\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x3a\x00\x00\x00\xa9\xff\xff\xff\x00\x00\x00\x00\x00\x00\x00\x00\x3b\x00\x00\x00\x3c\x00\x00\x00\x3d\x00\x00\x00\x00\x00\x00\x00\x3e\x00\x00\x00\x3f\x00\x00\x00\x7e\x00\x00\x00\x00\x00\x00\x00\x98\x00\x00\x00\x00\x00\x00\x00\x99\x00\x00\x00\x00\x00\x00\x00\x81\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x43\x00\x00\x00\x3a\x00\x00\x00\x44\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x3b\x00\x00\x00\x3c\x00\x00\x00\x3d\x00\x00\x00\x3a\x00\x00\x00\x3e\x00\x00\x00\x3f\x00\x00\x00\x00\x00\x00\x00\x3b\x00\x00\x00\x3c\x00\x00\x00\x3d\x00\x00\x00\x00\x00\x00\x00\x3e\x00\x00\x00\x3f\x00\x00\x00\x04\x00\x00\x00\x05\x00\x00\x00\x06\x00\x00\x00\x07\x00\x00\x00\x08\x00\x00\x00\x09\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0a\x00\x00\x00\x0b\x00\x00\x00\x0c\x00\x00\x00\x0d\x00\x00\x00\x00\x00\x00\x00\x0e\x00\x00\x00\x00\x00\x00\x00\x0f\x00\x00\x00\x23\x00\x00\x00\x05\x00\x00\x00\x06\x00\x00\x00\x07\x00\x00\x00\x08\x00\x00\x00\x09\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0a\x00\x00\x00\x0b\x00\x00\x00\x0c\x00\x00\x00\x0d\x00\x00\x00\x00\x00\x00\x00\x0e\x00\x00\x00\x00\x00\x00\x00\x0f\x00\x00\x00\x21\x00\x00\x00\x05\x00\x00\x00\x06\x00\x00\x00\x07\x00\x00\x00\x08\x00\x00\x00\x09\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0a\x00\x00\x00\x0b\x00\x00\x00\x0c\x00\x00\x00\x0d\x00\x00\x00\x00\x00\x00\x00\x0e\x00\x00\x00\x00\x00\x00\x00\x0f\x00\x00\x00\x1f\x00\x00\x00\x05\x00\x00\x00\x06\x00\x00\x00\x07\x00\x00\x00\x08\x00\x00\x00\x09\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0a\x00\x00\x00\x0b\x00\x00\x00\x0c\x00\x00\x00\x0d\x00\x00\x00\x00\x00\x00\x00\x0e\x00\x00\x00\x00\x00\x00\x00\x0f\x00\x00\x00\x1d\x00\x00\x00\x05\x00\x00\x00\x06\x00\x00\x00\x07\x00\x00\x00\x08\x00\x00\x00\x09\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0a\x00\x00\x00\x0b\x00\x00\x00\x0c\x00\x00\x00\x0d\x00\x00\x00\x00\x00\x00\x00\x0e\x00\x00\x00\x00\x00\x00\x00\x0f\x00\x00\x00\x04\x00\x00\x00\x05\x00\x00\x00\x06\x00\x00\x00\x07\x00\x00\x00\x08\x00\x00\x00\x09\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0a\x00\x00\x00\x0b\x00\x00\x00\x0c\x00\x00\x00\x0d\x00\x00\x00\x00\x00\x00\x00\x0e\x00\x00\x00\x00\x00\x00\x00\x0f\x00\x00\x00\x93\x00\x00\x00\x94\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa3\x00\x00\x00\x96\x00\x00\x00\x6e\x00\x00\x00\x6f\x00\x00\x00\x93\x00\x00\x00\x94\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa0\x00\x00\x00\x96\x00\x00\x00\x6e\x00\x00\x00\x6f\x00\x00\x00\x93\x00\x00\x00\x94\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x25\x01\x00\x00\x96\x00\x00\x00\x6e\x00\x00\x00\x6f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"#

happyReduceArr :: Array
  Int
  (Int#
   -> Token
   -> Int#
   -> Happy_IntList
   -> HappyStk HappyAbsSyn
   -> [Token]
   -> HappyIdentity HappyAbsSyn)
happyReduceArr = (Int, Int)
-> [(Int,
     Int#
     -> Token
     -> Int#
     -> Happy_IntList
     -> HappyStk HappyAbsSyn
     -> [Token]
     -> HappyIdentity HappyAbsSyn)]
-> Array
     Int
     (Int#
      -> Token
      -> Int#
      -> Happy_IntList
      -> HappyStk HappyAbsSyn
      -> [Token]
      -> HappyIdentity HappyAbsSyn)
forall i e. Ix i => (i, i) -> [(i, e)] -> Array i e
Happy_Data_Array.array (Int
1, Int
179) [
        (Int
1 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_1),
        (Int
2 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_2),
        (Int
3 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_3),
        (Int
4 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_4),
        (Int
5 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_5),
        (Int
6 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_6),
        (Int
7 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_7),
        (Int
8 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_8),
        (Int
9 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_9),
        (Int
10 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_10),
        (Int
11 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_11),
        (Int
12 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_12),
        (Int
13 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_13),
        (Int
14 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_14),
        (Int
15 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_15),
        (Int
16 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_16),
        (Int
17 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_17),
        (Int
18 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_18),
        (Int
19 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_19),
        (Int
20 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_20),
        (Int
21 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_21),
        (Int
22 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_22),
        (Int
23 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_23),
        (Int
24 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_24),
        (Int
25 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_25),
        (Int
26 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_26),
        (Int
27 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_27),
        (Int
28 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_28),
        (Int
29 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_29),
        (Int
30 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_30),
        (Int
31 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_31),
        (Int
32 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_32),
        (Int
33 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_33),
        (Int
34 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_34),
        (Int
35 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_35),
        (Int
36 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_36),
        (Int
37 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_37),
        (Int
38 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_38),
        (Int
39 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_39),
        (Int
40 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_40),
        (Int
41 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_41),
        (Int
42 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_42),
        (Int
43 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_43),
        (Int
44 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_44),
        (Int
45 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_45),
        (Int
46 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_46),
        (Int
47 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_47),
        (Int
48 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_48),
        (Int
49 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_49),
        (Int
50 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_50),
        (Int
51 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_51),
        (Int
52 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_52),
        (Int
53 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_53),
        (Int
54 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_54),
        (Int
55 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_55),
        (Int
56 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_56),
        (Int
57 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_57),
        (Int
58 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_58),
        (Int
59 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_59),
        (Int
60 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_60),
        (Int
61 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_61),
        (Int
62 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_62),
        (Int
63 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_63),
        (Int
64 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_64),
        (Int
65 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_65),
        (Int
66 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_66),
        (Int
67 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_67),
        (Int
68 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_68),
        (Int
69 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_69),
        (Int
70 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_70),
        (Int
71 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_71),
        (Int
72 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_72),
        (Int
73 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_73),
        (Int
74 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_74),
        (Int
75 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_75),
        (Int
76 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_76),
        (Int
77 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_77),
        (Int
78 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_78),
        (Int
79 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_79),
        (Int
80 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_80),
        (Int
81 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_81),
        (Int
82 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_82),
        (Int
83 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_83),
        (Int
84 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_84),
        (Int
85 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_85),
        (Int
86 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_86),
        (Int
87 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_87),
        (Int
88 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_88),
        (Int
89 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_89),
        (Int
90 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_90),
        (Int
91 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_91),
        (Int
92 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_92),
        (Int
93 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_93),
        (Int
94 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_94),
        (Int
95 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_95),
        (Int
96 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_96),
        (Int
97 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_97),
        (Int
98 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_98),
        (Int
99 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_99),
        (Int
100 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_100),
        (Int
101 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_101),
        (Int
102 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_102),
        (Int
103 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_103),
        (Int
104 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_104),
        (Int
105 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_105),
        (Int
106 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_106),
        (Int
107 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_107),
        (Int
108 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_108),
        (Int
109 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_109),
        (Int
110 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_110),
        (Int
111 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_111),
        (Int
112 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_112),
        (Int
113 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_113),
        (Int
114 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_114),
        (Int
115 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_115),
        (Int
116 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_116),
        (Int
117 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_117),
        (Int
118 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_118),
        (Int
119 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_119),
        (Int
120 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_120),
        (Int
121 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_121),
        (Int
122 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_122),
        (Int
123 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_123),
        (Int
124 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_124),
        (Int
125 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_125),
        (Int
126 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_126),
        (Int
127 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_127),
        (Int
128 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_128),
        (Int
129 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_129),
        (Int
130 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_130),
        (Int
131 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_131),
        (Int
132 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_132),
        (Int
133 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_133),
        (Int
134 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_134),
        (Int
135 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_135),
        (Int
136 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_136),
        (Int
137 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_137),
        (Int
138 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_138),
        (Int
139 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_139),
        (Int
140 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_140),
        (Int
141 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_141),
        (Int
142 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_142),
        (Int
143 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_143),
        (Int
144 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_144),
        (Int
145 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_145),
        (Int
146 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_146),
        (Int
147 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_147),
        (Int
148 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_148),
        (Int
149 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_149),
        (Int
150 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_150),
        (Int
151 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_151),
        (Int
152 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_152),
        (Int
153 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_153),
        (Int
154 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_154),
        (Int
155 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_155),
        (Int
156 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_156),
        (Int
157 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_157),
        (Int
158 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_158),
        (Int
159 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_159),
        (Int
160 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_160),
        (Int
161 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_161),
        (Int
162 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_162),
        (Int
163 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_163),
        (Int
164 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_164),
        (Int
165 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_165),
        (Int
166 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_166),
        (Int
167 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_167),
        (Int
168 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_168),
        (Int
169 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_169),
        (Int
170 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_170),
        (Int
171 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_171),
        (Int
172 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_172),
        (Int
173 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_173),
        (Int
174 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_174),
        (Int
175 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_175),
        (Int
176 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_176),
        (Int
177 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_177),
        (Int
178 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_178),
        (Int
179 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_179)
        ]

happyRuleArr :: HappyAddr
happyRuleArr :: HappyAddr
happyRuleArr = Addr# -> HappyAddr
HappyA# Addr#
"\x00\x00\x00\x00\x01\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x02\x00\x00\x00\x02\x00\x00\x00\x04\x00\x00\x00\x02\x00\x00\x00\x02\x00\x00\x00\x02\x00\x00\x00\x04\x00\x00\x00\x02\x00\x00\x00\x02\x00\x00\x00\x02\x00\x00\x00\x04\x00\x00\x00\x02\x00\x00\x00\x02\x00\x00\x00\x02\x00\x00\x00\x04\x00\x00\x00\x03\x00\x00\x00\x02\x00\x00\x00\x04\x00\x00\x00\x03\x00\x00\x00\x05\x00\x00\x00\x02\x00\x00\x00\x06\x00\x00\x00\x03\x00\x00\x00\x07\x00\x00\x00\x02\x00\x00\x00\x08\x00\x00\x00\x08\x00\x00\x00\x08\x00\x00\x00\x06\x00\x00\x00\x09\x00\x00\x00\x08\x00\x00\x00\x09\x00\x00\x00\x06\x00\x00\x00\x0a\x00\x00\x00\x05\x00\x00\x00\x0b\x00\x00\x00\x05\x00\x00\x00\x0c\x00\x00\x00\x04\x00\x00\x00\x0d\x00\x00\x00\x03\x00\x00\x00\x0e\x00\x00\x00\x05\x00\x00\x00\x0f\x00\x00\x00\x00\x00\x00\x00\x0f\x00\x00\x00\x01\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x02\x00\x00\x00\x11\x00\x00\x00\x04\x00\x00\x00\x12\x00\x00\x00\x00\x00\x00\x00\x12\x00\x00\x00\x02\x00\x00\x00\x13\x00\x00\x00\x01\x00\x00\x00\x14\x00\x00\x00\x01\x00\x00\x00\x14\x00\x00\x00\x02\x00\x00\x00\x15\x00\x00\x00\x01\x00\x00\x00\x15\x00\x00\x00\x03\x00\x00\x00\x16\x00\x00\x00\x01\x00\x00\x00\x16\x00\x00\x00\x01\x00\x00\x00\x16\x00\x00\x00\x01\x00\x00\x00\x16\x00\x00\x00\x01\x00\x00\x00\x16\x00\x00\x00\x01\x00\x00\x00\x16\x00\x00\x00\x01\x00\x00\x00\x17\x00\x00\x00\x02\x00\x00\x00\x18\x00\x00\x00\x02\x00\x00\x00\x18\x00\x00\x00\x03\x00\x00\x00\x19\x00\x00\x00\x03\x00\x00\x00\x19\x00\x00\x00\x03\x00\x00\x00\x1a\x00\x00\x00\x01\x00\x00\x00\x1b\x00\x00\x00\x00\x00\x00\x00\x1b\x00\x00\x00\x02\x00\x00\x00\x1b\x00\x00\x00\x02\x00\x00\x00\x1c\x00\x00\x00\x05\x00\x00\x00\x1c\x00\x00\x00\x05\x00\x00\x00\x1c\x00\x00\x00\x05\x00\x00\x00\x1c\x00\x00\x00\x06\x00\x00\x00\x1c\x00\x00\x00\x06\x00\x00\x00\x1c\x00\x00\x00\x06\x00\x00\x00\x1c\x00\x00\x00\x01\x00\x00\x00\x1c\x00\x00\x00\x01\x00\x00\x00\x1d\x00\x00\x00\x05\x00\x00\x00\x1d\x00\x00\x00\x05\x00\x00\x00\x1d\x00\x00\x00\x05\x00\x00\x00\x1e\x00\x00\x00\x05\x00\x00\x00\x1e\x00\x00\x00\x05\x00\x00\x00\x1e\x00\x00\x00\x05\x00\x00\x00\x1f\x00\x00\x00\x01\x00\x00\x00\x1f\x00\x00\x00\x03\x00\x00\x00\x1f\x00\x00\x00\x02\x00\x00\x00\x20\x00\x00\x00\x01\x00\x00\x00\x20\x00\x00\x00\x07\x00\x00\x00\x20\x00\x00\x00\x08\x00\x00\x00\x21\x00\x00\x00\x01\x00\x00\x00\x21\x00\x00\x00\x03\x00\x00\x00\x21\x00\x00\x00\x02\x00\x00\x00\x21\x00\x00\x00\x01\x00\x00\x00\x21\x00\x00\x00\x01\x00\x00\x00\x21\x00\x00\x00\x01\x00\x00\x00\x21\x00\x00\x00\x01\x00\x00\x00\x22\x00\x00\x00\x01\x00\x00\x00\x23\x00\x00\x00\x01\x00\x00\x00\x23\x00\x00\x00\x03\x00\x00\x00\x24\x00\x00\x00\x03\x00\x00\x00\x24\x00\x00\x00\x04\x00\x00\x00\x24\x00\x00\x00\x04\x00\x00\x00\x24\x00\x00\x00\x06\x00\x00\x00\x24\x00\x00\x00\x01\x00\x00\x00\x24\x00\x00\x00\x03\x00\x00\x00\x24\x00\x00\x00\x03\x00\x00\x00\x24\x00\x00\x00\x03\x00\x00\x00\x25\x00\x00\x00\x01\x00\x00\x00\x25\x00\x00\x00\x03\x00\x00\x00\x26\x00\x00\x00\x01\x00\x00\x00\x26\x00\x00\x00\x03\x00\x00\x00\x26\x00\x00\x00\x02\x00\x00\x00\x26\x00\x00\x00\x01\x00\x00\x00\x26\x00\x00\x00\x01\x00\x00\x00\x26\x00\x00\x00\x01\x00\x00\x00\x27\x00\x00\x00\x01\x00\x00\x00\x27\x00\x00\x00\x02\x00\x00\x00\x27\x00\x00\x00\x01\x00\x00\x00\x27\x00\x00\x00\x02\x00\x00\x00\x27\x00\x00\x00\x03\x00\x00\x00\x28\x00\x00\x00\x01\x00\x00\x00\x28\x00\x00\x00\x02\x00\x00\x00\x28\x00\x00\x00\x03\x00\x00\x00\x28\x00\x00\x00\x02\x00\x00\x00\x29\x00\x00\x00\x01\x00\x00\x00\x29\x00\x00\x00\x01\x00\x00\x00\x29\x00\x00\x00\x01\x00\x00\x00\x29\x00\x00\x00\x01\x00\x00\x00\x29\x00\x00\x00\x05\x00\x00\x00\x29\x00\x00\x00\x03\x00\x00\x00\x29\x00\x00\x00\x01\x00\x00\x00\x29\x00\x00\x00\x02\x00\x00\x00\x29\x00\x00\x00\x01\x00\x00\x00\x29\x00\x00\x00\x04\x00\x00\x00\x2a\x00\x00\x00\x01\x00\x00\x00\x2a\x00\x00\x00\x01\x00\x00\x00\x2b\x00\x00\x00\x03\x00\x00\x00\x2b\x00\x00\x00\x01\x00\x00\x00\x2b\x00\x00\x00\x00\x00\x00\x00\x2c\x00\x00\x00\x03\x00\x00\x00\x2d\x00\x00\x00\x03\x00\x00\x00\x2e\x00\x00\x00\x04\x00\x00\x00\x2e\x00\x00\x00\x02\x00\x00\x00\x2f\x00\x00\x00\x03\x00\x00\x00\x2f\x00\x00\x00\x02\x00\x00\x00\x2f\x00\x00\x00\x01\x00\x00\x00\x2f\x00\x00\x00\x00\x00\x00\x00\x30\x00\x00\x00\x05\x00\x00\x00\x30\x00\x00\x00\x03\x00\x00\x00\x30\x00\x00\x00\x03\x00\x00\x00\x30\x00\x00\x00\x01\x00\x00\x00\x30\x00\x00\x00\x00\x00\x00\x00\x31\x00\x00\x00\x04\x00\x00\x00\x31\x00\x00\x00\x02\x00\x00\x00\x32\x00\x00\x00\x01\x00\x00\x00\x33\x00\x00\x00\x00\x00\x00\x00\x33\x00\x00\x00\x02\x00\x00\x00\x33\x00\x00\x00\x03\x00\x00\x00\x34\x00\x00\x00\x02\x00\x00\x00\x34\x00\x00\x00\x03\x00\x00\x00\x34\x00\x00\x00\x01\x00\x00\x00\x34\x00\x00\x00\x02\x00\x00\x00\x34\x00\x00\x00\x02\x00\x00\x00\x34\x00\x00\x00\x02\x00\x00\x00\x35\x00\x00\x00\x03\x00\x00\x00\x35\x00\x00\x00\x01\x00\x00\x00\x36\x00\x00\x00\x01\x00\x00\x00\x36\x00\x00\x00\x03\x00\x00\x00\x36\x00\x00\x00\x03\x00\x00\x00\x36\x00\x00\x00\x01\x00\x00\x00\x36\x00\x00\x00\x03\x00\x00\x00\x37\x00\x00\x00\x02\x00\x00\x00\x37\x00\x00\x00\x02\x00\x00\x00\x38\x00\x00\x00\x01\x00\x00\x00\x38\x00\x00\x00\x02\x00\x00\x00\x39\x00\x00\x00\x01\x00\x00\x00\x3a\x00\x00\x00\x03\x00\x00\x00\x3a\x00\x00\x00\x02\x00\x00\x00\x3a\x00\x00\x00\x01\x00\x00\x00\x3a\x00\x00\x00\x00\x00\x00\x00\x3b\x00\x00\x00\x05\x00\x00\x00\x3b\x00\x00\x00\x05\x00\x00\x00\x3b\x00\x00\x00\x06\x00\x00\x00\x3b\x00\x00\x00\x06\x00\x00\x00\x3c\x00\x00\x00\x00\x00\x00\x00\x3c\x00\x00\x00\x02\x00\x00\x00"#

happyCatchStates :: [Happy_Prelude.Int]
happyCatchStates :: [Int]
happyCatchStates = []

happy_n_terms :: Int
happy_n_terms = Int
58 :: Happy_Prelude.Int
happy_n_nonterms :: Int
happy_n_nonterms = Int
61 :: Happy_Prelude.Int

happy_n_starts :: Int
happy_n_starts = Int
1 :: Happy_Prelude.Int

happyReduce_1 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_1 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_1  Int#
0# HappyAbsSyn -> HappyAbsSyn
happyReduction_1
happyReduction_1 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_1 HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap6
happyOut6 HappyAbsSyn
happy_x_1 of { (HappyWrap6 [Declaration]
happy_var_1) -> 
        [Declaration] -> HappyAbsSyn
happyIn5
                 ([Declaration] -> [Declaration]
forall a. [a] -> [a]
reverse [Declaration]
happy_var_1
        )}

happyReduce_2 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_2 = Int#
-> HappyAbsSyn
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_0  Int#
1# HappyAbsSyn
happyReduction_2
happyReduction_2 :: HappyAbsSyn
happyReduction_2  =  [Declaration] -> HappyAbsSyn
happyIn6
                 ([]
        )

happyReduce_3 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_3 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_2  Int#
1# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_3
happyReduction_3 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_3 HappyAbsSyn
happy_x_2
        HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap6
happyOut6 HappyAbsSyn
happy_x_1 of { (HappyWrap6 [Declaration]
happy_var_1) -> 
        case HappyAbsSyn -> HappyWrap7
happyOut7 HappyAbsSyn
happy_x_2 of { (HappyWrap7 Declaration
happy_var_2) -> 
        [Declaration] -> HappyAbsSyn
happyIn6
                 (Declaration
happy_var_2 Declaration -> [Declaration] -> [Declaration]
forall a. a -> [a] -> [a]
: [Declaration]
happy_var_1
        )}}

happyReduce_4 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_4 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_1  Int#
2# HappyAbsSyn -> HappyAbsSyn
happyReduction_4
happyReduction_4 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_4 HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap8
happyOut8 HappyAbsSyn
happy_x_1 of { (HappyWrap8 Declaration
happy_var_1) -> 
        Declaration -> HappyAbsSyn
happyIn7
                 (Declaration
happy_var_1
        )}

happyReduce_5 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_5 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_1  Int#
2# HappyAbsSyn -> HappyAbsSyn
happyReduction_5
happyReduction_5 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_5 HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap10
happyOut10 HappyAbsSyn
happy_x_1 of { (HappyWrap10 Declaration
happy_var_1) -> 
        Declaration -> HappyAbsSyn
happyIn7
                 (Declaration
happy_var_1
        )}

happyReduce_6 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_6 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_1  Int#
2# HappyAbsSyn -> HappyAbsSyn
happyReduction_6
happyReduction_6 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_6 HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap9
happyOut9 HappyAbsSyn
happy_x_1 of { (HappyWrap9 Declaration
happy_var_1) -> 
        Declaration -> HappyAbsSyn
happyIn7
                 (Declaration
happy_var_1
        )}

happyReduce_7 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_7 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_1  Int#
2# HappyAbsSyn -> HappyAbsSyn
happyReduction_7
happyReduction_7 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_7 HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap11
happyOut11 HappyAbsSyn
happy_x_1 of { (HappyWrap11 Declaration
happy_var_1) -> 
        Declaration -> HappyAbsSyn
happyIn7
                 (Declaration
happy_var_1
        )}

happyReduce_8 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_8 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_1  Int#
2# HappyAbsSyn -> HappyAbsSyn
happyReduction_8
happyReduction_8 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_8 HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap12
happyOut12 HappyAbsSyn
happy_x_1 of { (HappyWrap12 Declaration
happy_var_1) -> 
        Declaration -> HappyAbsSyn
happyIn7
                 (Declaration
happy_var_1
        )}

happyReduce_9 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_9 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_1  Int#
2# HappyAbsSyn -> HappyAbsSyn
happyReduction_9
happyReduction_9 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_9 HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap15
happyOut15 HappyAbsSyn
happy_x_1 of { (HappyWrap15 Declaration
happy_var_1) -> 
        Declaration -> HappyAbsSyn
happyIn7
                 (Declaration
happy_var_1
        )}

happyReduce_10 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_10 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_1  Int#
2# HappyAbsSyn -> HappyAbsSyn
happyReduction_10
happyReduction_10 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_10 HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap16
happyOut16 HappyAbsSyn
happy_x_1 of { (HappyWrap16 Declaration
happy_var_1) -> 
        Declaration -> HappyAbsSyn
happyIn7
                 (Declaration
happy_var_1
        )}

happyReduce_11 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_11 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_1  Int#
2# HappyAbsSyn -> HappyAbsSyn
happyReduction_11
happyReduction_11 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_11 HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap17
happyOut17 HappyAbsSyn
happy_x_1 of { (HappyWrap17 Declaration
happy_var_1) -> 
        Declaration -> HappyAbsSyn
happyIn7
                 (Declaration
happy_var_1
        )}

happyReduce_12 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_12 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_1  Int#
2# HappyAbsSyn -> HappyAbsSyn
happyReduction_12
happyReduction_12 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_12 HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap18
happyOut18 HappyAbsSyn
happy_x_1 of { (HappyWrap18 Declaration
happy_var_1) -> 
        Declaration -> HappyAbsSyn
happyIn7
                 (Declaration
happy_var_1
        )}

happyReduce_13 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_13 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_1  Int#
2# HappyAbsSyn -> HappyAbsSyn
happyReduction_13
happyReduction_13 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_13 HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap22
happyOut22 HappyAbsSyn
happy_x_1 of { (HappyWrap22 Declaration
happy_var_1) -> 
        Declaration -> HappyAbsSyn
happyIn7
                 (Declaration
happy_var_1
        )}

happyReduce_14 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_14 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_2  Int#
2# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_14
happyReduction_14 :: HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_14 HappyAbsSyn
happy_x_2
        p
happy_x_1
         =  case HappyAbsSyn -> HappyWrap7
happyOut7 HappyAbsSyn
happy_x_2 of { (HappyWrap7 Declaration
happy_var_2) -> 
        Declaration -> HappyAbsSyn
happyIn7
                 (Override -> [Declaration] -> Declaration
C.OverrideDecl Override
Impredicative [Declaration
happy_var_2]
        )}

happyReduce_15 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_15 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce Int#
4# Int#
2# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_15
happyReduction_15 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_15 (HappyAbsSyn
happy_x_4 `HappyStk`
        HappyAbsSyn
happy_x_3 `HappyStk`
        HappyAbsSyn
happy_x_2 `HappyStk`
        HappyAbsSyn
happy_x_1 `HappyStk`
        HappyStk HappyAbsSyn
happyRest)
         = case HappyAbsSyn -> HappyWrap6
happyOut6 HappyAbsSyn
happy_x_3 of { (HappyWrap6 [Declaration]
happy_var_3) -> 
        Declaration -> HappyAbsSyn
happyIn7
                 (Override -> [Declaration] -> Declaration
C.OverrideDecl Override
Impredicative [Declaration]
happy_var_3
        ) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}

happyReduce_16 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_16 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_2  Int#
2# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_16
happyReduction_16 :: HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_16 HappyAbsSyn
happy_x_2
        p
happy_x_1
         =  case HappyAbsSyn -> HappyWrap7
happyOut7 HappyAbsSyn
happy_x_2 of { (HappyWrap7 Declaration
happy_var_2) -> 
        Declaration -> HappyAbsSyn
happyIn7
                 (Override -> [Declaration] -> Declaration
C.OverrideDecl Override
Fail [Declaration
happy_var_2]
        )}

happyReduce_17 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_17 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce Int#
4# Int#
2# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_17
happyReduction_17 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_17 (HappyAbsSyn
happy_x_4 `HappyStk`
        HappyAbsSyn
happy_x_3 `HappyStk`
        HappyAbsSyn
happy_x_2 `HappyStk`
        HappyAbsSyn
happy_x_1 `HappyStk`
        HappyStk HappyAbsSyn
happyRest)
         = case HappyAbsSyn -> HappyWrap6
happyOut6 HappyAbsSyn
happy_x_3 of { (HappyWrap6 [Declaration]
happy_var_3) -> 
        Declaration -> HappyAbsSyn
happyIn7
                 (Override -> [Declaration] -> Declaration
C.OverrideDecl Override
Fail [Declaration]
happy_var_3
        ) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}

happyReduce_18 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_18 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_2  Int#
2# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_18
happyReduction_18 :: HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_18 HappyAbsSyn
happy_x_2
        p
happy_x_1
         =  case HappyAbsSyn -> HappyWrap7
happyOut7 HappyAbsSyn
happy_x_2 of { (HappyWrap7 Declaration
happy_var_2) -> 
        Declaration -> HappyAbsSyn
happyIn7
                 (Override -> [Declaration] -> Declaration
C.OverrideDecl Override
Check [Declaration
happy_var_2]
        )}

happyReduce_19 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_19 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce Int#
4# Int#
2# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_19
happyReduction_19 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_19 (HappyAbsSyn
happy_x_4 `HappyStk`
        HappyAbsSyn
happy_x_3 `HappyStk`
        HappyAbsSyn
happy_x_2 `HappyStk`
        HappyAbsSyn
happy_x_1 `HappyStk`
        HappyStk HappyAbsSyn
happyRest)
         = case HappyAbsSyn -> HappyWrap6
happyOut6 HappyAbsSyn
happy_x_3 of { (HappyWrap6 [Declaration]
happy_var_3) -> 
        Declaration -> HappyAbsSyn
happyIn7
                 (Override -> [Declaration] -> Declaration
C.OverrideDecl Override
Check [Declaration]
happy_var_3
        ) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}

happyReduce_20 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_20 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_2  Int#
2# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_20
happyReduction_20 :: HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_20 HappyAbsSyn
happy_x_2
        p
happy_x_1
         =  case HappyAbsSyn -> HappyWrap7
happyOut7 HappyAbsSyn
happy_x_2 of { (HappyWrap7 Declaration
happy_var_2) -> 
        Declaration -> HappyAbsSyn
happyIn7
                 (Override -> [Declaration] -> Declaration
C.OverrideDecl Override
TrustMe [Declaration
happy_var_2]
        )}

happyReduce_21 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_21 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce Int#
4# Int#
2# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_21
happyReduction_21 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_21 (HappyAbsSyn
happy_x_4 `HappyStk`
        HappyAbsSyn
happy_x_3 `HappyStk`
        HappyAbsSyn
happy_x_2 `HappyStk`
        HappyAbsSyn
happy_x_1 `HappyStk`
        HappyStk HappyAbsSyn
happyRest)
         = case HappyAbsSyn -> HappyWrap6
happyOut6 HappyAbsSyn
happy_x_3 of { (HappyWrap6 [Declaration]
happy_var_3) -> 
        Declaration -> HappyAbsSyn
happyIn7
                 (Override -> [Declaration] -> Declaration
C.OverrideDecl Override
TrustMe [Declaration]
happy_var_3
        ) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}

happyReduce_22 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_22 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_2  Int#
3# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_22
happyReduction_22 :: HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_22 HappyAbsSyn
happy_x_2
        p
happy_x_1
         =  case HappyAbsSyn -> HappyWrap13
happyOut13 HappyAbsSyn
happy_x_2 of { (HappyWrap13 (Name, Telescope, Type, [Constructor], [Name])
happy_var_2) -> 
        Declaration -> HappyAbsSyn
happyIn8
                 (let (Name
n,Telescope
tel,Type
t,[Constructor]
cs,[Name]
fs) = (Name, Telescope, Type, [Constructor], [Name])
happy_var_2 in Name
-> Sized
-> Co
-> Telescope
-> Type
-> [Constructor]
-> [Name]
-> Declaration
C.DataDecl Name
n Sized
A.NotSized Co
A.Ind Telescope
tel Type
t [Constructor]
cs [Name]
fs
        )}

happyReduce_23 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_23 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_3  Int#
4# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p} {p}. HappyAbsSyn -> p -> p -> HappyAbsSyn
happyReduction_23
happyReduction_23 :: HappyAbsSyn -> p -> p -> HappyAbsSyn
happyReduction_23 HappyAbsSyn
happy_x_3
        p
happy_x_2
        p
happy_x_1
         =  case HappyAbsSyn -> HappyWrap13
happyOut13 HappyAbsSyn
happy_x_3 of { (HappyWrap13 (Name, Telescope, Type, [Constructor], [Name])
happy_var_3) -> 
        Declaration -> HappyAbsSyn
happyIn9
                 (let (Name
n,Telescope
tel,Type
t,[Constructor]
cs,[Name]
fs) = (Name, Telescope, Type, [Constructor], [Name])
happy_var_3 in Name
-> Sized
-> Co
-> Telescope
-> Type
-> [Constructor]
-> [Name]
-> Declaration
C.DataDecl Name
n Sized
A.Sized Co
A.Ind Telescope
tel Type
t [Constructor]
cs [Name]
fs
        )}

happyReduce_24 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_24 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_2  Int#
5# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_24
happyReduction_24 :: HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_24 HappyAbsSyn
happy_x_2
        p
happy_x_1
         =  case HappyAbsSyn -> HappyWrap13
happyOut13 HappyAbsSyn
happy_x_2 of { (HappyWrap13 (Name, Telescope, Type, [Constructor], [Name])
happy_var_2) -> 
        Declaration -> HappyAbsSyn
happyIn10
                 (let (Name
n,Telescope
tel,Type
t,[Constructor]
cs,[Name]
fs) = (Name, Telescope, Type, [Constructor], [Name])
happy_var_2 in Name
-> Sized
-> Co
-> Telescope
-> Type
-> [Constructor]
-> [Name]
-> Declaration
C.DataDecl Name
n Sized
A.NotSized Co
A.CoInd Telescope
tel Type
t [Constructor]
cs [Name]
fs
        )}

happyReduce_25 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_25 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_3  Int#
6# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p} {p}. HappyAbsSyn -> p -> p -> HappyAbsSyn
happyReduction_25
happyReduction_25 :: HappyAbsSyn -> p -> p -> HappyAbsSyn
happyReduction_25 HappyAbsSyn
happy_x_3
        p
happy_x_2
        p
happy_x_1
         =  case HappyAbsSyn -> HappyWrap13
happyOut13 HappyAbsSyn
happy_x_3 of { (HappyWrap13 (Name, Telescope, Type, [Constructor], [Name])
happy_var_3) -> 
        Declaration -> HappyAbsSyn
happyIn11
                 (let (Name
n,Telescope
tel,Type
t,[Constructor]
cs,[Name]
fs) = (Name, Telescope, Type, [Constructor], [Name])
happy_var_3 in Name
-> Sized
-> Co
-> Telescope
-> Type
-> [Constructor]
-> [Name]
-> Declaration
C.DataDecl Name
n Sized
A.Sized Co
A.CoInd Telescope
tel Type
t [Constructor]
cs [Name]
fs
        )}

happyReduce_26 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_26 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_2  Int#
7# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_26
happyReduction_26 :: HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_26 HappyAbsSyn
happy_x_2
        p
happy_x_1
         =  case HappyAbsSyn -> HappyWrap14
happyOut14 HappyAbsSyn
happy_x_2 of { (HappyWrap14 (Name, Telescope, Type, Constructor, [Name])
happy_var_2) -> 
        Declaration -> HappyAbsSyn
happyIn12
                 (let (Name
n,Telescope
tel,Type
t,Constructor
c,[Name]
fs) = (Name, Telescope, Type, Constructor, [Name])
happy_var_2 in Name -> Telescope -> Type -> Constructor -> [Name] -> Declaration
C.RecordDecl Name
n Telescope
tel Type
t Constructor
c [Name]
fs
        )}

happyReduce_27 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_27 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce Int#
8# Int#
8# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_27
happyReduction_27 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_27 (HappyAbsSyn
happy_x_8 `HappyStk`
        HappyAbsSyn
happy_x_7 `HappyStk`
        HappyAbsSyn
happy_x_6 `HappyStk`
        HappyAbsSyn
happy_x_5 `HappyStk`
        HappyAbsSyn
happy_x_4 `HappyStk`
        HappyAbsSyn
happy_x_3 `HappyStk`
        HappyAbsSyn
happy_x_2 `HappyStk`
        HappyAbsSyn
happy_x_1 `HappyStk`
        HappyStk HappyAbsSyn
happyRest)
         = case HappyAbsSyn -> HappyWrap24
happyOut24 HappyAbsSyn
happy_x_1 of { (HappyWrap24 Name
happy_var_1) -> 
        case HappyAbsSyn -> HappyWrap65
happyOut65 HappyAbsSyn
happy_x_2 of { (HappyWrap65 Telescope
happy_var_2) -> 
        case HappyAbsSyn -> HappyWrap41
happyOut41 HappyAbsSyn
happy_x_4 of { (HappyWrap41 Type
happy_var_4) -> 
        case HappyAbsSyn -> HappyWrap52
happyOut52 HappyAbsSyn
happy_x_6 of { (HappyWrap52 [Constructor]
happy_var_6) -> 
        case HappyAbsSyn -> HappyWrap23
happyOut23 HappyAbsSyn
happy_x_8 of { (HappyWrap23 [Name]
happy_var_8) -> 
        (Name, Telescope, Type, [Constructor], [Name]) -> HappyAbsSyn
happyIn13
                 ((Name
happy_var_1, Telescope
happy_var_2, Type
happy_var_4, [Constructor] -> [Constructor]
forall a. [a] -> [a]
reverse [Constructor]
happy_var_6, [Name]
happy_var_8)
        ) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}}}}

happyReduce_28 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_28 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce Int#
6# Int#
8# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_28
happyReduction_28 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_28 (HappyAbsSyn
happy_x_6 `HappyStk`
        HappyAbsSyn
happy_x_5 `HappyStk`
        HappyAbsSyn
happy_x_4 `HappyStk`
        HappyAbsSyn
happy_x_3 `HappyStk`
        HappyAbsSyn
happy_x_2 `HappyStk`
        HappyAbsSyn
happy_x_1 `HappyStk`
        HappyStk HappyAbsSyn
happyRest)
         = case HappyAbsSyn -> HappyWrap24
happyOut24 HappyAbsSyn
happy_x_1 of { (HappyWrap24 Name
happy_var_1) -> 
        case HappyAbsSyn -> HappyWrap65
happyOut65 HappyAbsSyn
happy_x_2 of { (HappyWrap65 Telescope
happy_var_2) -> 
        case HappyAbsSyn -> HappyWrap52
happyOut52 HappyAbsSyn
happy_x_4 of { (HappyWrap52 [Constructor]
happy_var_4) -> 
        case HappyAbsSyn -> HappyWrap23
happyOut23 HappyAbsSyn
happy_x_6 of { (HappyWrap23 [Name]
happy_var_6) -> 
        (Name, Telescope, Type, [Constructor], [Name]) -> HappyAbsSyn
happyIn13
                 ((Name
happy_var_1, Telescope
happy_var_2, Type
C.set0, [Constructor] -> [Constructor]
forall a. [a] -> [a]
reverse [Constructor]
happy_var_4, [Name]
happy_var_6)
        ) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}}}

happyReduce_29 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_29 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce Int#
8# Int#
9# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_29
happyReduction_29 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_29 (HappyAbsSyn
happy_x_8 `HappyStk`
        HappyAbsSyn
happy_x_7 `HappyStk`
        HappyAbsSyn
happy_x_6 `HappyStk`
        HappyAbsSyn
happy_x_5 `HappyStk`
        HappyAbsSyn
happy_x_4 `HappyStk`
        HappyAbsSyn
happy_x_3 `HappyStk`
        HappyAbsSyn
happy_x_2 `HappyStk`
        HappyAbsSyn
happy_x_1 `HappyStk`
        HappyStk HappyAbsSyn
happyRest)
         = case HappyAbsSyn -> HappyWrap24
happyOut24 HappyAbsSyn
happy_x_1 of { (HappyWrap24 Name
happy_var_1) -> 
        case HappyAbsSyn -> HappyWrap65
happyOut65 HappyAbsSyn
happy_x_2 of { (HappyWrap65 Telescope
happy_var_2) -> 
        case HappyAbsSyn -> HappyWrap41
happyOut41 HappyAbsSyn
happy_x_4 of { (HappyWrap41 Type
happy_var_4) -> 
        case HappyAbsSyn -> HappyWrap51
happyOut51 HappyAbsSyn
happy_x_6 of { (HappyWrap51 Constructor
happy_var_6) -> 
        case HappyAbsSyn -> HappyWrap23
happyOut23 HappyAbsSyn
happy_x_8 of { (HappyWrap23 [Name]
happy_var_8) -> 
        (Name, Telescope, Type, Constructor, [Name]) -> HappyAbsSyn
happyIn14
                 ((Name
happy_var_1, Telescope
happy_var_2, Type
happy_var_4, Constructor
happy_var_6, [Name]
happy_var_8)
        ) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}}}}

happyReduce_30 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_30 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce Int#
6# Int#
9# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_30
happyReduction_30 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_30 (HappyAbsSyn
happy_x_6 `HappyStk`
        HappyAbsSyn
happy_x_5 `HappyStk`
        HappyAbsSyn
happy_x_4 `HappyStk`
        HappyAbsSyn
happy_x_3 `HappyStk`
        HappyAbsSyn
happy_x_2 `HappyStk`
        HappyAbsSyn
happy_x_1 `HappyStk`
        HappyStk HappyAbsSyn
happyRest)
         = case HappyAbsSyn -> HappyWrap24
happyOut24 HappyAbsSyn
happy_x_1 of { (HappyWrap24 Name
happy_var_1) -> 
        case HappyAbsSyn -> HappyWrap65
happyOut65 HappyAbsSyn
happy_x_2 of { (HappyWrap65 Telescope
happy_var_2) -> 
        case HappyAbsSyn -> HappyWrap51
happyOut51 HappyAbsSyn
happy_x_4 of { (HappyWrap51 Constructor
happy_var_4) -> 
        case HappyAbsSyn -> HappyWrap23
happyOut23 HappyAbsSyn
happy_x_6 of { (HappyWrap23 [Name]
happy_var_6) -> 
        (Name, Telescope, Type, Constructor, [Name]) -> HappyAbsSyn
happyIn14
                 ((Name
happy_var_1, Telescope
happy_var_2, Type
C.set0, Constructor
happy_var_4, [Name]
happy_var_6)
        ) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}}}

happyReduce_31 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_31 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce Int#
5# Int#
10# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_31
happyReduction_31 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_31 (HappyAbsSyn
happy_x_5 `HappyStk`
        HappyAbsSyn
happy_x_4 `HappyStk`
        HappyAbsSyn
happy_x_3 `HappyStk`
        HappyAbsSyn
happy_x_2 `HappyStk`
        HappyAbsSyn
happy_x_1 `HappyStk`
        HappyStk HappyAbsSyn
happyRest)
         = case HappyAbsSyn -> HappyWrap50
happyOut50 HappyAbsSyn
happy_x_2 of { (HappyWrap50 TypeSig
happy_var_2) -> 
        case HappyAbsSyn -> HappyWrap62
happyOut62 HappyAbsSyn
happy_x_4 of { (HappyWrap62 [Clause]
happy_var_4) -> 
        Declaration -> HappyAbsSyn
happyIn15
                 (Co -> TypeSig -> [Clause] -> Declaration
C.FunDecl Co
A.Ind TypeSig
happy_var_2 [Clause]
happy_var_4
        ) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}

happyReduce_32 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_32 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce Int#
5# Int#
11# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_32
happyReduction_32 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_32 (HappyAbsSyn
happy_x_5 `HappyStk`
        HappyAbsSyn
happy_x_4 `HappyStk`
        HappyAbsSyn
happy_x_3 `HappyStk`
        HappyAbsSyn
happy_x_2 `HappyStk`
        HappyAbsSyn
happy_x_1 `HappyStk`
        HappyStk HappyAbsSyn
happyRest)
         = case HappyAbsSyn -> HappyWrap50
happyOut50 HappyAbsSyn
happy_x_2 of { (HappyWrap50 TypeSig
happy_var_2) -> 
        case HappyAbsSyn -> HappyWrap62
happyOut62 HappyAbsSyn
happy_x_4 of { (HappyWrap62 [Clause]
happy_var_4) -> 
        Declaration -> HappyAbsSyn
happyIn16
                 (Co -> TypeSig -> [Clause] -> Declaration
C.FunDecl Co
A.CoInd TypeSig
happy_var_2 [Clause]
happy_var_4
        ) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}

happyReduce_33 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_33 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce Int#
4# Int#
12# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_33
happyReduction_33 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_33 (HappyAbsSyn
happy_x_4 `HappyStk`
        HappyAbsSyn
happy_x_3 `HappyStk`
        HappyAbsSyn
happy_x_2 `HappyStk`
        HappyAbsSyn
happy_x_1 `HappyStk`
        HappyStk HappyAbsSyn
happyRest)
         = case HappyAbsSyn -> HappyWrap6
happyOut6 HappyAbsSyn
happy_x_3 of { (HappyWrap6 [Declaration]
happy_var_3) -> 
        Declaration -> HappyAbsSyn
happyIn17
                 ([Declaration] -> Declaration
C.MutualDecl ([Declaration] -> [Declaration]
forall a. [a] -> [a]
reverse [Declaration]
happy_var_3)
        ) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}

happyReduce_34 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_34 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_3  Int#
13# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_34
happyReduction_34 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_34 HappyAbsSyn
happy_x_3
        p
happy_x_2
        HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap20
happyOut20 HappyAbsSyn
happy_x_1 of { (HappyWrap20 Bool
happy_var_1) -> 
        case HappyAbsSyn -> HappyWrap19
happyOut19 HappyAbsSyn
happy_x_3 of { (HappyWrap19 LetDef
happy_var_3) -> 
        Declaration -> HappyAbsSyn
happyIn18
                 (Bool -> LetDef -> Declaration
C.LetDecl Bool
happy_var_1 LetDef
happy_var_3
        )}}

happyReduce_35 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_35 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce Int#
5# Int#
14# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_35
happyReduction_35 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_35 (HappyAbsSyn
happy_x_5 `HappyStk`
        HappyAbsSyn
happy_x_4 `HappyStk`
        HappyAbsSyn
happy_x_3 `HappyStk`
        HappyAbsSyn
happy_x_2 `HappyStk`
        HappyAbsSyn
happy_x_1 `HappyStk`
        HappyStk HappyAbsSyn
happyRest)
         = case HappyAbsSyn -> HappyWrap36
happyOut36 HappyAbsSyn
happy_x_1 of { (HappyWrap36 (Dec, Name)
happy_var_1) -> 
        case HappyAbsSyn -> HappyWrap32
happyOut32 HappyAbsSyn
happy_x_2 of { (HappyWrap32 Telescope
happy_var_2) -> 
        case HappyAbsSyn -> HappyWrap21
happyOut21 HappyAbsSyn
happy_x_3 of { (HappyWrap21 Maybe Type
happy_var_3) -> 
        case HappyAbsSyn -> HappyWrap39
happyOut39 HappyAbsSyn
happy_x_5 of { (HappyWrap39 Type
happy_var_5) -> 
        LetDef -> HappyAbsSyn
happyIn19
                 (let (Dec
dec,Name
n) = (Dec, Name)
happy_var_1 in Dec -> Name -> Telescope -> Maybe Type -> Type -> LetDef
C.LetDef Dec
dec Name
n Telescope
happy_var_2 Maybe Type
happy_var_3 Type
happy_var_5
        ) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}}}

happyReduce_36 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_36 = Int#
-> HappyAbsSyn
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_0  Int#
15# HappyAbsSyn
happyReduction_36
happyReduction_36 :: HappyAbsSyn
happyReduction_36  =  Bool -> HappyAbsSyn
happyIn20
                 (Bool
False
        )

happyReduce_37 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_37 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_1  Int#
15# HappyAbsSyn -> HappyAbsSyn
forall {p}. p -> HappyAbsSyn
happyReduction_37
happyReduction_37 :: p -> HappyAbsSyn
happyReduction_37 p
happy_x_1
         =  Bool -> HappyAbsSyn
happyIn20
                 (Bool
True
        )

happyReduce_38 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_38 = Int#
-> HappyAbsSyn
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_0  Int#
16# HappyAbsSyn
happyReduction_38
happyReduction_38 :: HappyAbsSyn
happyReduction_38  =  Maybe Type -> HappyAbsSyn
happyIn21
                 (Maybe Type
forall a. Maybe a
Nothing
        )

happyReduce_39 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_39 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_2  Int#
16# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_39
happyReduction_39 :: HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_39 HappyAbsSyn
happy_x_2
        p
happy_x_1
         =  case HappyAbsSyn -> HappyWrap41
happyOut41 HappyAbsSyn
happy_x_2 of { (HappyWrap41 Type
happy_var_2) -> 
        Maybe Type -> HappyAbsSyn
happyIn21
                 (Type -> Maybe Type
forall a. a -> Maybe a
Just Type
happy_var_2
        )}

happyReduce_40 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_40 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce Int#
4# Int#
17# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_40
happyReduction_40 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_40 (HappyAbsSyn
happy_x_4 `HappyStk`
        HappyAbsSyn
happy_x_3 `HappyStk`
        HappyAbsSyn
happy_x_2 `HappyStk`
        HappyAbsSyn
happy_x_1 `HappyStk`
        HappyStk HappyAbsSyn
happyRest)
         = case HappyAbsSyn -> HappyWrap25
happyOut25 HappyAbsSyn
happy_x_2 of { (HappyWrap25 [Name]
happy_var_2) -> 
        case HappyAbsSyn -> HappyWrap58
happyOut58 HappyAbsSyn
happy_x_4 of { (HappyWrap58 Pattern
happy_var_4) -> 
        Declaration -> HappyAbsSyn
happyIn22
                 (Name -> [Name] -> Pattern -> Declaration
C.PatternDecl ([Name] -> Name
forall a. HasCallStack => [a] -> a
head [Name]
happy_var_2) ([Name] -> [Name]
forall a. HasCallStack => [a] -> [a]
tail [Name]
happy_var_2) Pattern
happy_var_4
        ) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}

happyReduce_41 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_41 = Int#
-> HappyAbsSyn
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_0  Int#
18# HappyAbsSyn
happyReduction_41
happyReduction_41 :: HappyAbsSyn
happyReduction_41  =  [Name] -> HappyAbsSyn
happyIn23
                 ([]
        )

happyReduce_42 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_42 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_2  Int#
18# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_42
happyReduction_42 :: HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_42 HappyAbsSyn
happy_x_2
        p
happy_x_1
         =  case HappyAbsSyn -> HappyWrap26
happyOut26 HappyAbsSyn
happy_x_2 of { (HappyWrap26 [Name]
happy_var_2) -> 
        [Name] -> HappyAbsSyn
happyIn23
                 ([Name]
happy_var_2
        )}

happyReduce_43 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_43 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_1  Int#
19# HappyAbsSyn -> HappyAbsSyn
happyReduction_43
happyReduction_43 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_43 HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> Token
happyOutTok HappyAbsSyn
happy_x_1 of { (T.Id String
happy_var_1 AlexPosn
_) -> 
        Name -> HappyAbsSyn
happyIn24
                 (String -> Name
C.Name String
happy_var_1
        )}

happyReduce_44 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_44 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_1  Int#
20# HappyAbsSyn -> HappyAbsSyn
happyReduction_44
happyReduction_44 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_44 HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap24
happyOut24 HappyAbsSyn
happy_x_1 of { (HappyWrap24 Name
happy_var_1) -> 
        [Name] -> HappyAbsSyn
happyIn25
                 ([Name
happy_var_1]
        )}

happyReduce_45 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_45 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_2  Int#
20# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_45
happyReduction_45 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_45 HappyAbsSyn
happy_x_2
        HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap24
happyOut24 HappyAbsSyn
happy_x_1 of { (HappyWrap24 Name
happy_var_1) -> 
        case HappyAbsSyn -> HappyWrap25
happyOut25 HappyAbsSyn
happy_x_2 of { (HappyWrap25 [Name]
happy_var_2) -> 
        [Name] -> HappyAbsSyn
happyIn25
                 (Name
happy_var_1 Name -> [Name] -> [Name]
forall a. a -> [a] -> [a]
: [Name]
happy_var_2
        )}}

happyReduce_46 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_46 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_1  Int#
21# HappyAbsSyn -> HappyAbsSyn
happyReduction_46
happyReduction_46 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_46 HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap24
happyOut24 HappyAbsSyn
happy_x_1 of { (HappyWrap24 Name
happy_var_1) -> 
        [Name] -> HappyAbsSyn
happyIn26
                 ([Name
happy_var_1]
        )}

happyReduce_47 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_47 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_3  Int#
21# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_47
happyReduction_47 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_47 HappyAbsSyn
happy_x_3
        p
happy_x_2
        HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap24
happyOut24 HappyAbsSyn
happy_x_1 of { (HappyWrap24 Name
happy_var_1) -> 
        case HappyAbsSyn -> HappyWrap26
happyOut26 HappyAbsSyn
happy_x_3 of { (HappyWrap26 [Name]
happy_var_3) -> 
        [Name] -> HappyAbsSyn
happyIn26
                 (Name
happy_var_1 Name -> [Name] -> [Name]
forall a. a -> [a] -> [a]
: [Name]
happy_var_3
        )}}

happyReduce_48 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_48 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_1  Int#
22# HappyAbsSyn -> HappyAbsSyn
forall {p}. p -> HappyAbsSyn
happyReduction_48
happyReduction_48 :: p -> HappyAbsSyn
happyReduction_48 p
happy_x_1
         =  Pol -> HappyAbsSyn
happyIn27
                 (Pol
SPos
        )

happyReduce_49 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_49 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_1  Int#
22# HappyAbsSyn -> HappyAbsSyn
forall {p}. p -> HappyAbsSyn
happyReduction_49
happyReduction_49 :: p -> HappyAbsSyn
happyReduction_49 p
happy_x_1
         =  Pol -> HappyAbsSyn
happyIn27
                 (Pol
Pos
        )

happyReduce_50 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_50 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_1  Int#
22# HappyAbsSyn -> HappyAbsSyn
forall {p}. p -> HappyAbsSyn
happyReduction_50
happyReduction_50 :: p -> HappyAbsSyn
happyReduction_50 p
happy_x_1
         =  Pol -> HappyAbsSyn
happyIn27
                 (Pol
Neg
        )

happyReduce_51 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_51 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_1  Int#
22# HappyAbsSyn -> HappyAbsSyn
forall {p}. p -> HappyAbsSyn
happyReduction_51
happyReduction_51 :: p -> HappyAbsSyn
happyReduction_51 p
happy_x_1
         =  Pol -> HappyAbsSyn
happyIn27
                 (Pol
Const
        )

happyReduce_52 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_52 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_1  Int#
22# HappyAbsSyn -> HappyAbsSyn
forall {p}. p -> HappyAbsSyn
happyReduction_52
happyReduction_52 :: p -> HappyAbsSyn
happyReduction_52 p
happy_x_1
         =  Pol -> HappyAbsSyn
happyIn27
                 (Pol
Param
        )

happyReduce_53 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_53 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_1  Int#
22# HappyAbsSyn -> HappyAbsSyn
forall {p}. p -> HappyAbsSyn
happyReduction_53
happyReduction_53 :: p -> HappyAbsSyn
happyReduction_53 p
happy_x_1
         =  Pol -> HappyAbsSyn
happyIn27
                 (Pol
Rec
        )

happyReduce_54 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_54 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_2  Int#
23# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_54
happyReduction_54 :: HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_54 HappyAbsSyn
happy_x_2
        p
happy_x_1
         =  case HappyAbsSyn -> HappyWrap29
happyOut29 HappyAbsSyn
happy_x_2 of { (HappyWrap29 [Type]
happy_var_2) -> 
        Measure Type -> HappyAbsSyn
happyIn28
                 ([Type] -> Measure Type
forall a. [a] -> Measure a
A.Measure [Type]
happy_var_2
        )}

happyReduce_55 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_55 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_2  Int#
24# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_55
happyReduction_55 :: p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_55 p
happy_x_2
        HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap41
happyOut41 HappyAbsSyn
happy_x_1 of { (HappyWrap41 Type
happy_var_1) -> 
        [Type] -> HappyAbsSyn
happyIn29
                 ([Type
happy_var_1]
        )}

happyReduce_56 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_56 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_3  Int#
24# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_56
happyReduction_56 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_56 HappyAbsSyn
happy_x_3
        p
happy_x_2
        HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap41
happyOut41 HappyAbsSyn
happy_x_1 of { (HappyWrap41 Type
happy_var_1) -> 
        case HappyAbsSyn -> HappyWrap29
happyOut29 HappyAbsSyn
happy_x_3 of { (HappyWrap29 [Type]
happy_var_3) -> 
        [Type] -> HappyAbsSyn
happyIn29
                 (Type
happy_var_1 Type -> [Type] -> [Type]
forall a. a -> [a] -> [a]
: [Type]
happy_var_3
        )}}

happyReduce_57 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_57 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_3  Int#
25# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_57
happyReduction_57 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_57 HappyAbsSyn
happy_x_3
        p
happy_x_2
        HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap28
happyOut28 HappyAbsSyn
happy_x_1 of { (HappyWrap28 Measure Type
happy_var_1) -> 
        case HappyAbsSyn -> HappyWrap28
happyOut28 HappyAbsSyn
happy_x_3 of { (HappyWrap28 Measure Type
happy_var_3) -> 
        Bound Type -> HappyAbsSyn
happyIn30
                 (LtLe -> Measure Type -> Measure Type -> Bound Type
forall a. LtLe -> Measure a -> Measure a -> Bound a
A.Bound LtLe
A.Lt Measure Type
happy_var_1 Measure Type
happy_var_3
        )}}

happyReduce_58 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_58 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_3  Int#
25# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_58
happyReduction_58 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_58 HappyAbsSyn
happy_x_3
        p
happy_x_2
        HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap28
happyOut28 HappyAbsSyn
happy_x_1 of { (HappyWrap28 Measure Type
happy_var_1) -> 
        case HappyAbsSyn -> HappyWrap28
happyOut28 HappyAbsSyn
happy_x_3 of { (HappyWrap28 Measure Type
happy_var_3) -> 
        Bound Type -> HappyAbsSyn
happyIn30
                 (LtLe -> Measure Type -> Measure Type -> Bound Type
forall a. LtLe -> Measure a -> Measure a -> Bound a
A.Bound LtLe
A.Le Measure Type
happy_var_1 Measure Type
happy_var_3
        )}}

happyReduce_59 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_59 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_1  Int#
26# HappyAbsSyn -> HappyAbsSyn
happyReduction_59
happyReduction_59 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_59 HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap40
happyOut40 HappyAbsSyn
happy_x_1 of { (HappyWrap40 [Type]
happy_var_1) -> 
        [Name] -> HappyAbsSyn
happyIn31
                 (let { f :: Type -> Name
f (C.Ident (C.QName Name
x)) = Name
x
                            ; f Type
e = String -> Name
forall a. HasCallStack => String -> a
error (String
"not an identifier: " String -> String -> String
forall a. [a] -> [a] -> [a]
++ Type -> String
C.prettyExpr Type
e)
                            } in (Type -> Name) -> [Type] -> [Name]
forall a b. (a -> b) -> [a] -> [b]
map Type -> Name
f [Type]
happy_var_1
        )}

happyReduce_60 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_60 = Int#
-> HappyAbsSyn
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_0  Int#
27# HappyAbsSyn
happyReduction_60
happyReduction_60 :: HappyAbsSyn
happyReduction_60  =  Telescope -> HappyAbsSyn
happyIn32
                 ([]
        )

happyReduce_61 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_61 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_2  Int#
27# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_61
happyReduction_61 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_61 HappyAbsSyn
happy_x_2
        HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap33
happyOut33 HappyAbsSyn
happy_x_1 of { (HappyWrap33 TBind
happy_var_1) -> 
        case HappyAbsSyn -> HappyWrap32
happyOut32 HappyAbsSyn
happy_x_2 of { (HappyWrap32 Telescope
happy_var_2) -> 
        Telescope -> HappyAbsSyn
happyIn32
                 (TBind
happy_var_1 TBind -> Telescope -> Telescope
forall a. a -> [a] -> [a]
: Telescope
happy_var_2
        )}}

happyReduce_62 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_62 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_2  Int#
27# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_62
happyReduction_62 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_62 HappyAbsSyn
happy_x_2
        HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap28
happyOut28 HappyAbsSyn
happy_x_1 of { (HappyWrap28 Measure Type
happy_var_1) -> 
        case HappyAbsSyn -> HappyWrap32
happyOut32 HappyAbsSyn
happy_x_2 of { (HappyWrap32 Telescope
happy_var_2) -> 
        Telescope -> HappyAbsSyn
happyIn32
                 (Measure Type -> TBind
forall a. Measure Type -> TBinding a
C.TMeasure Measure Type
happy_var_1 TBind -> Telescope -> Telescope
forall a. a -> [a] -> [a]
: Telescope
happy_var_2
        )}}

happyReduce_63 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_63 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce Int#
5# Int#
28# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_63
happyReduction_63 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_63 (HappyAbsSyn
happy_x_5 `HappyStk`
        HappyAbsSyn
happy_x_4 `HappyStk`
        HappyAbsSyn
happy_x_3 `HappyStk`
        HappyAbsSyn
happy_x_2 `HappyStk`
        HappyAbsSyn
happy_x_1 `HappyStk`
        HappyStk HappyAbsSyn
happyRest)
         = case HappyAbsSyn -> HappyWrap31
happyOut31 HappyAbsSyn
happy_x_2 of { (HappyWrap31 [Name]
happy_var_2) -> 
        case HappyAbsSyn -> HappyWrap41
happyOut41 HappyAbsSyn
happy_x_4 of { (HappyWrap41 Type
happy_var_4) -> 
        TBind -> HappyAbsSyn
happyIn33
                 (Dec -> [Name] -> Type -> TBind
forall a. Dec -> [Name] -> a -> TBinding a
C.TBind   (Pol -> Dec
forall pos. pos -> Decoration pos
Dec Pol
Default) [Name]
happy_var_2      Type
happy_var_4
        ) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}

happyReduce_64 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_64 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce Int#
5# Int#
28# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_64
happyReduction_64 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_64 (HappyAbsSyn
happy_x_5 `HappyStk`
        HappyAbsSyn
happy_x_4 `HappyStk`
        HappyAbsSyn
happy_x_3 `HappyStk`
        HappyAbsSyn
happy_x_2 `HappyStk`
        HappyAbsSyn
happy_x_1 `HappyStk`
        HappyStk HappyAbsSyn
happyRest)
         = case HappyAbsSyn -> HappyWrap24
happyOut24 HappyAbsSyn
happy_x_2 of { (HappyWrap24 Name
happy_var_2) -> 
        case HappyAbsSyn -> HappyWrap41
happyOut41 HappyAbsSyn
happy_x_4 of { (HappyWrap41 Type
happy_var_4) -> 
        TBind -> HappyAbsSyn
happyIn33
                 (Dec -> Name -> LtLe -> Type -> TBind
forall a. Dec -> Name -> LtLe -> Type -> TBinding a
C.TBounded Dec
A.defaultDec Name
happy_var_2 LtLe
A.Lt Type
happy_var_4
        ) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}

happyReduce_65 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_65 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce Int#
5# Int#
28# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_65
happyReduction_65 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_65 (HappyAbsSyn
happy_x_5 `HappyStk`
        HappyAbsSyn
happy_x_4 `HappyStk`
        HappyAbsSyn
happy_x_3 `HappyStk`
        HappyAbsSyn
happy_x_2 `HappyStk`
        HappyAbsSyn
happy_x_1 `HappyStk`
        HappyStk HappyAbsSyn
happyRest)
         = case HappyAbsSyn -> HappyWrap24
happyOut24 HappyAbsSyn
happy_x_2 of { (HappyWrap24 Name
happy_var_2) -> 
        case HappyAbsSyn -> HappyWrap41
happyOut41 HappyAbsSyn
happy_x_4 of { (HappyWrap41 Type
happy_var_4) -> 
        TBind -> HappyAbsSyn
happyIn33
                 (Dec -> Name -> LtLe -> Type -> TBind
forall a. Dec -> Name -> LtLe -> Type -> TBinding a
C.TBounded Dec
A.defaultDec Name
happy_var_2 LtLe
A.Le Type
happy_var_4
        ) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}

happyReduce_66 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_66 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce Int#
6# Int#
28# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_66
happyReduction_66 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_66 (HappyAbsSyn
happy_x_6 `HappyStk`
        HappyAbsSyn
happy_x_5 `HappyStk`
        HappyAbsSyn
happy_x_4 `HappyStk`
        HappyAbsSyn
happy_x_3 `HappyStk`
        HappyAbsSyn
happy_x_2 `HappyStk`
        HappyAbsSyn
happy_x_1 `HappyStk`
        HappyStk HappyAbsSyn
happyRest)
         = case HappyAbsSyn -> HappyWrap27
happyOut27 HappyAbsSyn
happy_x_1 of { (HappyWrap27 Pol
happy_var_1) -> 
        case HappyAbsSyn -> HappyWrap31
happyOut31 HappyAbsSyn
happy_x_3 of { (HappyWrap31 [Name]
happy_var_3) -> 
        case HappyAbsSyn -> HappyWrap41
happyOut41 HappyAbsSyn
happy_x_5 of { (HappyWrap41 Type
happy_var_5) -> 
        TBind -> HappyAbsSyn
happyIn33
                 (Dec -> [Name] -> Type -> TBind
forall a. Dec -> [Name] -> a -> TBinding a
C.TBind    (Pol -> Dec
forall pos. pos -> Decoration pos
Dec Pol
happy_var_1)     [Name]
happy_var_3      Type
happy_var_5
        ) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}}

happyReduce_67 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_67 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce Int#
6# Int#
28# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_67
happyReduction_67 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_67 (HappyAbsSyn
happy_x_6 `HappyStk`
        HappyAbsSyn
happy_x_5 `HappyStk`
        HappyAbsSyn
happy_x_4 `HappyStk`
        HappyAbsSyn
happy_x_3 `HappyStk`
        HappyAbsSyn
happy_x_2 `HappyStk`
        HappyAbsSyn
happy_x_1 `HappyStk`
        HappyStk HappyAbsSyn
happyRest)
         = case HappyAbsSyn -> HappyWrap27
happyOut27 HappyAbsSyn
happy_x_1 of { (HappyWrap27 Pol
happy_var_1) -> 
        case HappyAbsSyn -> HappyWrap24
happyOut24 HappyAbsSyn
happy_x_3 of { (HappyWrap24 Name
happy_var_3) -> 
        case HappyAbsSyn -> HappyWrap41
happyOut41 HappyAbsSyn
happy_x_5 of { (HappyWrap41 Type
happy_var_5) -> 
        TBind -> HappyAbsSyn
happyIn33
                 (Dec -> Name -> LtLe -> Type -> TBind
forall a. Dec -> Name -> LtLe -> Type -> TBinding a
C.TBounded (Pol -> Dec
forall pos. pos -> Decoration pos
Dec Pol
happy_var_1)     Name
happy_var_3 LtLe
A.Lt Type
happy_var_5
        ) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}}

happyReduce_68 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_68 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce Int#
6# Int#
28# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_68
happyReduction_68 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_68 (HappyAbsSyn
happy_x_6 `HappyStk`
        HappyAbsSyn
happy_x_5 `HappyStk`
        HappyAbsSyn
happy_x_4 `HappyStk`
        HappyAbsSyn
happy_x_3 `HappyStk`
        HappyAbsSyn
happy_x_2 `HappyStk`
        HappyAbsSyn
happy_x_1 `HappyStk`
        HappyStk HappyAbsSyn
happyRest)
         = case HappyAbsSyn -> HappyWrap27
happyOut27 HappyAbsSyn
happy_x_1 of { (HappyWrap27 Pol
happy_var_1) -> 
        case HappyAbsSyn -> HappyWrap24
happyOut24 HappyAbsSyn
happy_x_3 of { (HappyWrap24 Name
happy_var_3) -> 
        case HappyAbsSyn -> HappyWrap41
happyOut41 HappyAbsSyn
happy_x_5 of { (HappyWrap41 Type
happy_var_5) -> 
        TBind -> HappyAbsSyn
happyIn33
                 (Dec -> Name -> LtLe -> Type -> TBind
forall a. Dec -> Name -> LtLe -> Type -> TBinding a
C.TBounded (Pol -> Dec
forall pos. pos -> Decoration pos
Dec Pol
happy_var_1)     Name
happy_var_3 LtLe
A.Le Type
happy_var_5
        ) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}}

happyReduce_69 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_69 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_1  Int#
28# HappyAbsSyn -> HappyAbsSyn
happyReduction_69
happyReduction_69 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_69 HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap34
happyOut34 HappyAbsSyn
happy_x_1 of { (HappyWrap34 TBind
happy_var_1) -> 
        TBind -> HappyAbsSyn
happyIn33
                 (TBind
happy_var_1
        )}

happyReduce_70 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_70 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_1  Int#
28# HappyAbsSyn -> HappyAbsSyn
happyReduction_70
happyReduction_70 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_70 HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap35
happyOut35 HappyAbsSyn
happy_x_1 of { (HappyWrap35 TBind
happy_var_1) -> 
        TBind -> HappyAbsSyn
happyIn33
                 (TBind
happy_var_1
        )}

happyReduce_71 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_71 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce Int#
5# Int#
29# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_71
happyReduction_71 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_71 (HappyAbsSyn
happy_x_5 `HappyStk`
        HappyAbsSyn
happy_x_4 `HappyStk`
        HappyAbsSyn
happy_x_3 `HappyStk`
        HappyAbsSyn
happy_x_2 `HappyStk`
        HappyAbsSyn
happy_x_1 `HappyStk`
        HappyStk HappyAbsSyn
happyRest)
         = case HappyAbsSyn -> HappyWrap26
happyOut26 HappyAbsSyn
happy_x_2 of { (HappyWrap26 [Name]
happy_var_2) -> 
        case HappyAbsSyn -> HappyWrap41
happyOut41 HappyAbsSyn
happy_x_4 of { (HappyWrap41 Type
happy_var_4) -> 
        TBind -> HappyAbsSyn
happyIn34
                 (Dec -> [Name] -> Type -> TBind
forall a. Dec -> [Name] -> a -> TBinding a
C.TBind    Dec
A.irrelevantDec [Name]
happy_var_2      Type
happy_var_4
        ) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}

happyReduce_72 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_72 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce Int#
5# Int#
29# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_72
happyReduction_72 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_72 (HappyAbsSyn
happy_x_5 `HappyStk`
        HappyAbsSyn
happy_x_4 `HappyStk`
        HappyAbsSyn
happy_x_3 `HappyStk`
        HappyAbsSyn
happy_x_2 `HappyStk`
        HappyAbsSyn
happy_x_1 `HappyStk`
        HappyStk HappyAbsSyn
happyRest)
         = case HappyAbsSyn -> HappyWrap24
happyOut24 HappyAbsSyn
happy_x_2 of { (HappyWrap24 Name
happy_var_2) -> 
        case HappyAbsSyn -> HappyWrap41
happyOut41 HappyAbsSyn
happy_x_4 of { (HappyWrap41 Type
happy_var_4) -> 
        TBind -> HappyAbsSyn
happyIn34
                 (Dec -> Name -> LtLe -> Type -> TBind
forall a. Dec -> Name -> LtLe -> Type -> TBinding a
C.TBounded Dec
A.irrelevantDec Name
happy_var_2 LtLe
A.Lt Type
happy_var_4
        ) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}

happyReduce_73 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_73 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce Int#
5# Int#
29# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_73
happyReduction_73 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_73 (HappyAbsSyn
happy_x_5 `HappyStk`
        HappyAbsSyn
happy_x_4 `HappyStk`
        HappyAbsSyn
happy_x_3 `HappyStk`
        HappyAbsSyn
happy_x_2 `HappyStk`
        HappyAbsSyn
happy_x_1 `HappyStk`
        HappyStk HappyAbsSyn
happyRest)
         = case HappyAbsSyn -> HappyWrap24
happyOut24 HappyAbsSyn
happy_x_2 of { (HappyWrap24 Name
happy_var_2) -> 
        case HappyAbsSyn -> HappyWrap41
happyOut41 HappyAbsSyn
happy_x_4 of { (HappyWrap41 Type
happy_var_4) -> 
        TBind -> HappyAbsSyn
happyIn34
                 (Dec -> Name -> LtLe -> Type -> TBind
forall a. Dec -> Name -> LtLe -> Type -> TBinding a
C.TBounded Dec
A.irrelevantDec Name
happy_var_2 LtLe
A.Le Type
happy_var_4
        ) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}

happyReduce_74 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_74 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce Int#
5# Int#
30# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_74
happyReduction_74 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_74 (HappyAbsSyn
happy_x_5 `HappyStk`
        HappyAbsSyn
happy_x_4 `HappyStk`
        HappyAbsSyn
happy_x_3 `HappyStk`
        HappyAbsSyn
happy_x_2 `HappyStk`
        HappyAbsSyn
happy_x_1 `HappyStk`
        HappyStk HappyAbsSyn
happyRest)
         = case HappyAbsSyn -> HappyWrap26
happyOut26 HappyAbsSyn
happy_x_2 of { (HappyWrap26 [Name]
happy_var_2) -> 
        case HappyAbsSyn -> HappyWrap41
happyOut41 HappyAbsSyn
happy_x_4 of { (HappyWrap41 Type
happy_var_4) -> 
        TBind -> HappyAbsSyn
happyIn35
                 (Dec -> [Name] -> Type -> TBind
forall a. Dec -> [Name] -> a -> TBinding a
C.TBind    Dec
forall pos. Decoration pos
A.Hidden [Name]
happy_var_2      Type
happy_var_4
        ) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}

happyReduce_75 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_75 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce Int#
5# Int#
30# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_75
happyReduction_75 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_75 (HappyAbsSyn
happy_x_5 `HappyStk`
        HappyAbsSyn
happy_x_4 `HappyStk`
        HappyAbsSyn
happy_x_3 `HappyStk`
        HappyAbsSyn
happy_x_2 `HappyStk`
        HappyAbsSyn
happy_x_1 `HappyStk`
        HappyStk HappyAbsSyn
happyRest)
         = case HappyAbsSyn -> HappyWrap24
happyOut24 HappyAbsSyn
happy_x_2 of { (HappyWrap24 Name
happy_var_2) -> 
        case HappyAbsSyn -> HappyWrap41
happyOut41 HappyAbsSyn
happy_x_4 of { (HappyWrap41 Type
happy_var_4) -> 
        TBind -> HappyAbsSyn
happyIn35
                 (Dec -> Name -> LtLe -> Type -> TBind
forall a. Dec -> Name -> LtLe -> Type -> TBinding a
C.TBounded Dec
forall pos. Decoration pos
A.Hidden Name
happy_var_2 LtLe
A.Lt Type
happy_var_4
        ) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}

happyReduce_76 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_76 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce Int#
5# Int#
30# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_76
happyReduction_76 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_76 (HappyAbsSyn
happy_x_5 `HappyStk`
        HappyAbsSyn
happy_x_4 `HappyStk`
        HappyAbsSyn
happy_x_3 `HappyStk`
        HappyAbsSyn
happy_x_2 `HappyStk`
        HappyAbsSyn
happy_x_1 `HappyStk`
        HappyStk HappyAbsSyn
happyRest)
         = case HappyAbsSyn -> HappyWrap24
happyOut24 HappyAbsSyn
happy_x_2 of { (HappyWrap24 Name
happy_var_2) -> 
        case HappyAbsSyn -> HappyWrap41
happyOut41 HappyAbsSyn
happy_x_4 of { (HappyWrap41 Type
happy_var_4) -> 
        TBind -> HappyAbsSyn
happyIn35
                 (Dec -> Name -> LtLe -> Type -> TBind
forall a. Dec -> Name -> LtLe -> Type -> TBinding a
C.TBounded Dec
forall pos. Decoration pos
A.Hidden Name
happy_var_2 LtLe
A.Le Type
happy_var_4
        ) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}

happyReduce_77 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_77 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_1  Int#
31# HappyAbsSyn -> HappyAbsSyn
happyReduction_77
happyReduction_77 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_77 HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap24
happyOut24 HappyAbsSyn
happy_x_1 of { (HappyWrap24 Name
happy_var_1) -> 
        (Dec, Name) -> HappyAbsSyn
happyIn36
                 ((Dec
A.defaultDec   , Name
happy_var_1)
        )}

happyReduce_78 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_78 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_3  Int#
31# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p} {p}. p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_78
happyReduction_78 :: p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_78 p
happy_x_3
        HappyAbsSyn
happy_x_2
        p
happy_x_1
         =  case HappyAbsSyn -> HappyWrap24
happyOut24 HappyAbsSyn
happy_x_2 of { (HappyWrap24 Name
happy_var_2) -> 
        (Dec, Name) -> HappyAbsSyn
happyIn36
                 ((Dec
A.irrelevantDec, Name
happy_var_2)
        )}

happyReduce_79 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_79 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_2  Int#
31# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_79
happyReduction_79 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_79 HappyAbsSyn
happy_x_2
        HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap27
happyOut27 HappyAbsSyn
happy_x_1 of { (HappyWrap27 Pol
happy_var_1) -> 
        case HappyAbsSyn -> HappyWrap24
happyOut24 HappyAbsSyn
happy_x_2 of { (HappyWrap24 Name
happy_var_2) -> 
        (Dec, Name) -> HappyAbsSyn
happyIn36
                 ((Pol -> Dec
forall pos. pos -> Decoration pos
Dec Pol
happy_var_1         , Name
happy_var_2)
        )}}

happyReduce_80 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_80 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_1  Int#
32# HappyAbsSyn -> HappyAbsSyn
happyReduction_80
happyReduction_80 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_80 HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap19
happyOut19 HappyAbsSyn
happy_x_1 of { (HappyWrap19 LetDef
happy_var_1) -> 
        LetDef -> HappyAbsSyn
happyIn37
                 (LetDef
happy_var_1
        )}

happyReduce_81 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_81 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce Int#
7# Int#
32# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_81
happyReduction_81 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_81 (HappyAbsSyn
happy_x_7 `HappyStk`
        HappyAbsSyn
happy_x_6 `HappyStk`
        HappyAbsSyn
happy_x_5 `HappyStk`
        HappyAbsSyn
happy_x_4 `HappyStk`
        HappyAbsSyn
happy_x_3 `HappyStk`
        HappyAbsSyn
happy_x_2 `HappyStk`
        HappyAbsSyn
happy_x_1 `HappyStk`
        HappyStk HappyAbsSyn
happyRest)
         = case HappyAbsSyn -> HappyWrap24
happyOut24 HappyAbsSyn
happy_x_2 of { (HappyWrap24 Name
happy_var_2) -> 
        case HappyAbsSyn -> HappyWrap41
happyOut41 HappyAbsSyn
happy_x_4 of { (HappyWrap41 Type
happy_var_4) -> 
        case HappyAbsSyn -> HappyWrap41
happyOut41 HappyAbsSyn
happy_x_7 of { (HappyWrap41 Type
happy_var_7) -> 
        LetDef -> HappyAbsSyn
happyIn37
                 (Dec -> Name -> Telescope -> Maybe Type -> Type -> LetDef
C.LetDef Dec
A.irrelevantDec Name
happy_var_2 [] (Type -> Maybe Type
forall a. a -> Maybe a
Just Type
happy_var_4) Type
happy_var_7
        ) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}}

happyReduce_82 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_82 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce Int#
8# Int#
32# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_82
happyReduction_82 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_82 (HappyAbsSyn
happy_x_8 `HappyStk`
        HappyAbsSyn
happy_x_7 `HappyStk`
        HappyAbsSyn
happy_x_6 `HappyStk`
        HappyAbsSyn
happy_x_5 `HappyStk`
        HappyAbsSyn
happy_x_4 `HappyStk`
        HappyAbsSyn
happy_x_3 `HappyStk`
        HappyAbsSyn
happy_x_2 `HappyStk`
        HappyAbsSyn
happy_x_1 `HappyStk`
        HappyStk HappyAbsSyn
happyRest)
         = case HappyAbsSyn -> HappyWrap27
happyOut27 HappyAbsSyn
happy_x_1 of { (HappyWrap27 Pol
happy_var_1) -> 
        case HappyAbsSyn -> HappyWrap24
happyOut24 HappyAbsSyn
happy_x_3 of { (HappyWrap24 Name
happy_var_3) -> 
        case HappyAbsSyn -> HappyWrap41
happyOut41 HappyAbsSyn
happy_x_5 of { (HappyWrap41 Type
happy_var_5) -> 
        case HappyAbsSyn -> HappyWrap41
happyOut41 HappyAbsSyn
happy_x_8 of { (HappyWrap41 Type
happy_var_8) -> 
        LetDef -> HappyAbsSyn
happyIn37
                 (Dec -> Name -> Telescope -> Maybe Type -> Type -> LetDef
C.LetDef (Pol -> Dec
forall pos. pos -> Decoration pos
Dec Pol
happy_var_1) Name
happy_var_3 [] (Type -> Maybe Type
forall a. a -> Maybe a
Just Type
happy_var_5) Type
happy_var_8
        ) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}}}

happyReduce_83 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_83 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_1  Int#
33# HappyAbsSyn -> HappyAbsSyn
happyReduction_83
happyReduction_83 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_83 HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap42
happyOut42 HappyAbsSyn
happy_x_1 of { (HappyWrap42 Type
happy_var_1) -> 
        Telescope -> HappyAbsSyn
happyIn38
                 ([Dec -> [Name] -> Type -> TBind
forall a. Dec -> [Name] -> a -> TBinding a
C.TBind (Pol -> Dec
forall pos. pos -> Decoration pos
Dec Pol
Default) {- A.defaultDec -} [] Type
happy_var_1]
        )}

happyReduce_84 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_84 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_3  Int#
33# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p} {p}. p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_84
happyReduction_84 :: p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_84 p
happy_x_3
        HappyAbsSyn
happy_x_2
        p
happy_x_1
         =  case HappyAbsSyn -> HappyWrap41
happyOut41 HappyAbsSyn
happy_x_2 of { (HappyWrap41 Type
happy_var_2) -> 
        Telescope -> HappyAbsSyn
happyIn38
                 ([Dec -> [Name] -> Type -> TBind
forall a. Dec -> [Name] -> a -> TBinding a
C.TBind Dec
A.irrelevantDec [] Type
happy_var_2]
        )}

happyReduce_85 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_85 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_2  Int#
33# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_85
happyReduction_85 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_85 HappyAbsSyn
happy_x_2
        HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap27
happyOut27 HappyAbsSyn
happy_x_1 of { (HappyWrap27 Pol
happy_var_1) -> 
        case HappyAbsSyn -> HappyWrap42
happyOut42 HappyAbsSyn
happy_x_2 of { (HappyWrap42 Type
happy_var_2) -> 
        Telescope -> HappyAbsSyn
happyIn38
                 ([Dec -> [Name] -> Type -> TBind
forall a. Dec -> [Name] -> a -> TBinding a
C.TBind (Pol -> Dec
forall pos. pos -> Decoration pos
Dec Pol
happy_var_1) [] Type
happy_var_2]
        )}}

happyReduce_86 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_86 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_1  Int#
33# HappyAbsSyn -> HappyAbsSyn
happyReduction_86
happyReduction_86 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_86 HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap33
happyOut33 HappyAbsSyn
happy_x_1 of { (HappyWrap33 TBind
happy_var_1) -> 
        Telescope -> HappyAbsSyn
happyIn38
                 ([TBind
happy_var_1]
        )}

happyReduce_87 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_87 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_1  Int#
33# HappyAbsSyn -> HappyAbsSyn
happyReduction_87
happyReduction_87 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_87 HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap28
happyOut28 HappyAbsSyn
happy_x_1 of { (HappyWrap28 Measure Type
happy_var_1) -> 
        Telescope -> HappyAbsSyn
happyIn38
                 ([Measure Type -> TBind
forall a. Measure Type -> TBinding a
C.TMeasure Measure Type
happy_var_1]
        )}

happyReduce_88 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_88 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_1  Int#
33# HappyAbsSyn -> HappyAbsSyn
happyReduction_88
happyReduction_88 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_88 HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap30
happyOut30 HappyAbsSyn
happy_x_1 of { (HappyWrap30 Bound Type
happy_var_1) -> 
        Telescope -> HappyAbsSyn
happyIn38
                 ([Bound Type -> TBind
forall a. Bound Type -> TBinding a
C.TBound Bound Type
happy_var_1]
        )}

happyReduce_89 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_89 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_1  Int#
33# HappyAbsSyn -> HappyAbsSyn
happyReduction_89
happyReduction_89 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_89 HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap32
happyOut32 HappyAbsSyn
happy_x_1 of { (HappyWrap32 Telescope
happy_var_1) -> 
        Telescope -> HappyAbsSyn
happyIn38
                 (Telescope
happy_var_1
        )}

happyReduce_90 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_90 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_1  Int#
34# HappyAbsSyn -> HappyAbsSyn
happyReduction_90
happyReduction_90 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_90 HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap40
happyOut40 HappyAbsSyn
happy_x_1 of { (HappyWrap40 [Type]
happy_var_1) -> 
        Type -> HappyAbsSyn
happyIn39
                 ((Type -> Type -> Type) -> [Type] -> Type
forall a. (a -> a -> a) -> [a] -> a
forall (t :: * -> *) a. Foldable t => (a -> a -> a) -> t a -> a
foldr1 Type -> Type -> Type
C.Pair [Type]
happy_var_1
        )}

happyReduce_91 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_91 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_1  Int#
35# HappyAbsSyn -> HappyAbsSyn
happyReduction_91
happyReduction_91 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_91 HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap41
happyOut41 HappyAbsSyn
happy_x_1 of { (HappyWrap41 Type
happy_var_1) -> 
        [Type] -> HappyAbsSyn
happyIn40
                 ([Type
happy_var_1]
        )}

happyReduce_92 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_92 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_3  Int#
35# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_92
happyReduction_92 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_92 HappyAbsSyn
happy_x_3
        p
happy_x_2
        HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap41
happyOut41 HappyAbsSyn
happy_x_1 of { (HappyWrap41 Type
happy_var_1) -> 
        case HappyAbsSyn -> HappyWrap40
happyOut40 HappyAbsSyn
happy_x_3 of { (HappyWrap40 [Type]
happy_var_3) -> 
        [Type] -> HappyAbsSyn
happyIn40
                 (Type
happy_var_1 Type -> [Type] -> [Type]
forall a. a -> [a] -> [a]
: [Type]
happy_var_3
        )}}

happyReduce_93 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_93 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_3  Int#
36# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_93
happyReduction_93 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_93 HappyAbsSyn
happy_x_3
        p
happy_x_2
        HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap38
happyOut38 HappyAbsSyn
happy_x_1 of { (HappyWrap38 Telescope
happy_var_1) -> 
        case HappyAbsSyn -> HappyWrap41
happyOut41 HappyAbsSyn
happy_x_3 of { (HappyWrap41 Type
happy_var_3) -> 
        Type -> HappyAbsSyn
happyIn41
                 (PiSigma -> Telescope -> Type -> Type
C.Quant PiSigma
A.Pi Telescope
happy_var_1 Type
happy_var_3
        )}}

happyReduce_94 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_94 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce Int#
4# Int#
36# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_94
happyReduction_94 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_94 (HappyAbsSyn
happy_x_4 `HappyStk`
        HappyAbsSyn
happy_x_3 `HappyStk`
        HappyAbsSyn
happy_x_2 `HappyStk`
        HappyAbsSyn
happy_x_1 `HappyStk`
        HappyStk HappyAbsSyn
happyRest)
         = case HappyAbsSyn -> HappyWrap25
happyOut25 HappyAbsSyn
happy_x_2 of { (HappyWrap25 [Name]
happy_var_2) -> 
        case HappyAbsSyn -> HappyWrap39
happyOut39 HappyAbsSyn
happy_x_4 of { (HappyWrap39 Type
happy_var_4) -> 
        Type -> HappyAbsSyn
happyIn41
                 ((Name -> Type -> Type) -> Type -> [Name] -> Type
forall a b. (a -> b -> b) -> b -> [a] -> b
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr Name -> Type -> Type
C.Lam Type
happy_var_4 [Name]
happy_var_2
        ) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}

happyReduce_95 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_95 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce Int#
4# Int#
36# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_95
happyReduction_95 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_95 (HappyAbsSyn
happy_x_4 `HappyStk`
        HappyAbsSyn
happy_x_3 `HappyStk`
        HappyAbsSyn
happy_x_2 `HappyStk`
        HappyAbsSyn
happy_x_1 `HappyStk`
        HappyStk HappyAbsSyn
happyRest)
         = case HappyAbsSyn -> HappyWrap37
happyOut37 HappyAbsSyn
happy_x_2 of { (HappyWrap37 LetDef
happy_var_2) -> 
        case HappyAbsSyn -> HappyWrap39
happyOut39 HappyAbsSyn
happy_x_4 of { (HappyWrap39 Type
happy_var_4) -> 
        Type -> HappyAbsSyn
happyIn41
                 (LetDef -> Type -> Type
C.LLet LetDef
happy_var_2 Type
happy_var_4
        ) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}

happyReduce_96 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_96 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce Int#
6# Int#
36# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_96
happyReduction_96 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_96 (HappyAbsSyn
happy_x_6 `HappyStk`
        HappyAbsSyn
happy_x_5 `HappyStk`
        HappyAbsSyn
happy_x_4 `HappyStk`
        HappyAbsSyn
happy_x_3 `HappyStk`
        HappyAbsSyn
happy_x_2 `HappyStk`
        HappyAbsSyn
happy_x_1 `HappyStk`
        HappyStk HappyAbsSyn
happyRest)
         = case HappyAbsSyn -> HappyWrap39
happyOut39 HappyAbsSyn
happy_x_2 of { (HappyWrap39 Type
happy_var_2) -> 
        case HappyAbsSyn -> HappyWrap21
happyOut21 HappyAbsSyn
happy_x_3 of { (HappyWrap21 Maybe Type
happy_var_3) -> 
        case HappyAbsSyn -> HappyWrap53
happyOut53 HappyAbsSyn
happy_x_5 of { (HappyWrap53 [Clause]
happy_var_5) -> 
        Type -> HappyAbsSyn
happyIn41
                 (Type -> Maybe Type -> [Clause] -> Type
C.Case Type
happy_var_2 Maybe Type
happy_var_3 [Clause]
happy_var_5
        ) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}}

happyReduce_97 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_97 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_1  Int#
36# HappyAbsSyn -> HappyAbsSyn
happyReduction_97
happyReduction_97 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_97 HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap42
happyOut42 HappyAbsSyn
happy_x_1 of { (HappyWrap42 Type
happy_var_1) -> 
        Type -> HappyAbsSyn
happyIn41
                 (Type
happy_var_1
        )}

happyReduce_98 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_98 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_3  Int#
36# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_98
happyReduction_98 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_98 HappyAbsSyn
happy_x_3
        p
happy_x_2
        HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap44
happyOut44 HappyAbsSyn
happy_x_1 of { (HappyWrap44 Type
happy_var_1) -> 
        case HappyAbsSyn -> HappyWrap41
happyOut41 HappyAbsSyn
happy_x_3 of { (HappyWrap41 Type
happy_var_3) -> 
        Type -> HappyAbsSyn
happyIn41
                 (Type -> Type -> Type
C.Plus Type
happy_var_1 Type
happy_var_3
        )}}

happyReduce_99 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_99 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_3  Int#
36# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_99
happyReduction_99 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_99 HappyAbsSyn
happy_x_3
        p
happy_x_2
        HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap44
happyOut44 HappyAbsSyn
happy_x_1 of { (HappyWrap44 Type
happy_var_1) -> 
        case HappyAbsSyn -> HappyWrap41
happyOut41 HappyAbsSyn
happy_x_3 of { (HappyWrap41 Type
happy_var_3) -> 
        Type -> HappyAbsSyn
happyIn41
                 (Type -> [Type] -> Type
C.App Type
happy_var_1 [Type
happy_var_3]
        )}}

happyReduce_100 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_100 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_3  Int#
36# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_100
happyReduction_100 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_100 HappyAbsSyn
happy_x_3
        p
happy_x_2
        HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap44
happyOut44 HappyAbsSyn
happy_x_1 of { (HappyWrap44 Type
happy_var_1) -> 
        case HappyAbsSyn -> HappyWrap41
happyOut41 HappyAbsSyn
happy_x_3 of { (HappyWrap41 Type
happy_var_3) -> 
        Type -> HappyAbsSyn
happyIn41
                 (Type -> [Type] -> Type
C.App Type
happy_var_3 [Type
happy_var_1]
        )}}

happyReduce_101 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_101 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_1  Int#
37# HappyAbsSyn -> HappyAbsSyn
happyReduction_101
happyReduction_101 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_101 HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap44
happyOut44 HappyAbsSyn
happy_x_1 of { (HappyWrap44 Type
happy_var_1) -> 
        Type -> HappyAbsSyn
happyIn42
                 (Type
happy_var_1
        )}

happyReduce_102 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_102 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_3  Int#
37# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_102
happyReduction_102 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_102 HappyAbsSyn
happy_x_3
        p
happy_x_2
        HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap43
happyOut43 HappyAbsSyn
happy_x_1 of { (HappyWrap43 TBind
happy_var_1) -> 
        case HappyAbsSyn -> HappyWrap42
happyOut42 HappyAbsSyn
happy_x_3 of { (HappyWrap42 Type
happy_var_3) -> 
        Type -> HappyAbsSyn
happyIn42
                 (PiSigma -> Telescope -> Type -> Type
C.Quant PiSigma
A.Sigma [TBind
happy_var_1] Type
happy_var_3
        )}}

happyReduce_103 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_103 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_1  Int#
38# HappyAbsSyn -> HappyAbsSyn
happyReduction_103
happyReduction_103 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_103 HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap44
happyOut44 HappyAbsSyn
happy_x_1 of { (HappyWrap44 Type
happy_var_1) -> 
        TBind -> HappyAbsSyn
happyIn43
                 (Dec -> [Name] -> Type -> TBind
forall a. Dec -> [Name] -> a -> TBinding a
C.TBind (Pol -> Dec
forall pos. pos -> Decoration pos
Dec Pol
Default) {- A.defaultDec -} [] Type
happy_var_1
        )}

happyReduce_104 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_104 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_3  Int#
38# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p} {p}. p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_104
happyReduction_104 :: p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_104 p
happy_x_3
        HappyAbsSyn
happy_x_2
        p
happy_x_1
         =  case HappyAbsSyn -> HappyWrap41
happyOut41 HappyAbsSyn
happy_x_2 of { (HappyWrap41 Type
happy_var_2) -> 
        TBind -> HappyAbsSyn
happyIn43
                 (Dec -> [Name] -> Type -> TBind
forall a. Dec -> [Name] -> a -> TBinding a
C.TBind Dec
A.irrelevantDec [] Type
happy_var_2
        )}

happyReduce_105 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_105 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_2  Int#
38# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_105
happyReduction_105 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_105 HappyAbsSyn
happy_x_2
        HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap27
happyOut27 HappyAbsSyn
happy_x_1 of { (HappyWrap27 Pol
happy_var_1) -> 
        case HappyAbsSyn -> HappyWrap44
happyOut44 HappyAbsSyn
happy_x_2 of { (HappyWrap44 Type
happy_var_2) -> 
        TBind -> HappyAbsSyn
happyIn43
                 (Dec -> [Name] -> Type -> TBind
forall a. Dec -> [Name] -> a -> TBinding a
C.TBind (Pol -> Dec
forall pos. pos -> Decoration pos
Dec Pol
happy_var_1) [] Type
happy_var_2
        )}}

happyReduce_106 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_106 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_1  Int#
38# HappyAbsSyn -> HappyAbsSyn
happyReduction_106
happyReduction_106 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_106 HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap33
happyOut33 HappyAbsSyn
happy_x_1 of { (HappyWrap33 TBind
happy_var_1) -> 
        TBind -> HappyAbsSyn
happyIn43
                 (TBind
happy_var_1
        )}

happyReduce_107 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_107 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_1  Int#
38# HappyAbsSyn -> HappyAbsSyn
happyReduction_107
happyReduction_107 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_107 HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap28
happyOut28 HappyAbsSyn
happy_x_1 of { (HappyWrap28 Measure Type
happy_var_1) -> 
        TBind -> HappyAbsSyn
happyIn43
                 (Measure Type -> TBind
forall a. Measure Type -> TBinding a
C.TMeasure Measure Type
happy_var_1
        )}

happyReduce_108 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_108 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_1  Int#
38# HappyAbsSyn -> HappyAbsSyn
happyReduction_108
happyReduction_108 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_108 HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap30
happyOut30 HappyAbsSyn
happy_x_1 of { (HappyWrap30 Bound Type
happy_var_1) -> 
        TBind -> HappyAbsSyn
happyIn43
                 (Bound Type -> TBind
forall a. Bound Type -> TBinding a
C.TBound Bound Type
happy_var_1
        )}

happyReduce_109 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_109 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_1  Int#
39# HappyAbsSyn -> HappyAbsSyn
happyReduction_109
happyReduction_109 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_109 HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap45
happyOut45 HappyAbsSyn
happy_x_1 of { (HappyWrap45 [Type]
happy_var_1) -> 
        Type -> HappyAbsSyn
happyIn44
                 (let (Type
f : [Type]
args) = [Type] -> [Type]
forall a. [a] -> [a]
reverse [Type]
happy_var_1 in
                if [Type] -> Bool
forall a. [a] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [Type]
args then Type
f else Type -> [Type] -> Type
C.App Type
f [Type]
args
        )}

happyReduce_110 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_110 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_2  Int#
39# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_110
happyReduction_110 :: HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_110 HappyAbsSyn
happy_x_2
        p
happy_x_1
         =  case HappyAbsSyn -> HappyWrap46
happyOut46 HappyAbsSyn
happy_x_2 of { (HappyWrap46 Type
happy_var_2) -> 
        Type -> HappyAbsSyn
happyIn44
                 (Type -> Type
C.CoSet Type
happy_var_2
        )}

happyReduce_111 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_111 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_1  Int#
39# HappyAbsSyn -> HappyAbsSyn
forall {p}. p -> HappyAbsSyn
happyReduction_111
happyReduction_111 :: p -> HappyAbsSyn
happyReduction_111 p
happy_x_1
         =  Type -> HappyAbsSyn
happyIn44
                 (Type -> Type
C.Set Type
C.Zero
        )

happyReduce_112 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_112 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_2  Int#
39# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_112
happyReduction_112 :: HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_112 HappyAbsSyn
happy_x_2
        p
happy_x_1
         =  case HappyAbsSyn -> HappyWrap46
happyOut46 HappyAbsSyn
happy_x_2 of { (HappyWrap46 Type
happy_var_2) -> 
        Type -> HappyAbsSyn
happyIn44
                 (Type -> Type
C.Set Type
happy_var_2
        )}

happyReduce_113 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_113 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_3  Int#
39# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_113
happyReduction_113 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_113 HappyAbsSyn
happy_x_3
        p
happy_x_2
        HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> Token
happyOutTok HappyAbsSyn
happy_x_1 of { (T.Number String
happy_var_1 AlexPosn
_) -> 
        case HappyAbsSyn -> HappyWrap44
happyOut44 HappyAbsSyn
happy_x_3 of { (HappyWrap44 Type
happy_var_3) -> 
        Type -> HappyAbsSyn
happyIn44
                 (let n :: a
n = String -> a
forall a. Read a => String -> a
read String
happy_var_1 in
                            if Integer
forall {a}. Read a => a
nInteger -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
==Integer
0 then Type
C.Zero else
                            (Type -> Type) -> Type -> [Type]
forall a. (a -> a) -> a -> [a]
iterate (Type -> Type -> Type
C.Plus Type
happy_var_3) Type
happy_var_3 [Type] -> Int -> Type
forall a. HasCallStack => [a] -> Int -> a
!! (Int
forall {a}. Read a => a
nInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
1)
        )}}

happyReduce_114 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_114 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_1  Int#
40# HappyAbsSyn -> HappyAbsSyn
happyReduction_114
happyReduction_114 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_114 HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap46
happyOut46 HappyAbsSyn
happy_x_1 of { (HappyWrap46 Type
happy_var_1) -> 
        [Type] -> HappyAbsSyn
happyIn45
                 ([Type
happy_var_1]
        )}

happyReduce_115 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_115 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_2  Int#
40# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_115
happyReduction_115 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_115 HappyAbsSyn
happy_x_2
        HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap45
happyOut45 HappyAbsSyn
happy_x_1 of { (HappyWrap45 [Type]
happy_var_1) -> 
        case HappyAbsSyn -> HappyWrap46
happyOut46 HappyAbsSyn
happy_x_2 of { (HappyWrap46 Type
happy_var_2) -> 
        [Type] -> HappyAbsSyn
happyIn45
                 (Type
happy_var_2 Type -> [Type] -> [Type]
forall a. a -> [a] -> [a]
: [Type]
happy_var_1
        )}}

happyReduce_116 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_116 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_3  Int#
40# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_116
happyReduction_116 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_116 HappyAbsSyn
happy_x_3
        p
happy_x_2
        HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap45
happyOut45 HappyAbsSyn
happy_x_1 of { (HappyWrap45 [Type]
happy_var_1) -> 
        case HappyAbsSyn -> HappyWrap24
happyOut24 HappyAbsSyn
happy_x_3 of { (HappyWrap24 Name
happy_var_3) -> 
        [Type] -> HappyAbsSyn
happyIn45
                 (Name -> Type
C.Proj Name
happy_var_3 Type -> [Type] -> [Type]
forall a. a -> [a] -> [a]
: [Type]
happy_var_1
        )}}

happyReduce_117 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_117 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_2  Int#
40# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_117
happyReduction_117 :: p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_117 p
happy_x_2
        HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap45
happyOut45 HappyAbsSyn
happy_x_1 of { (HappyWrap45 [Type]
happy_var_1) -> 
        [Type] -> HappyAbsSyn
happyIn45
                 (Type -> Type
C.Set Type
C.Zero Type -> [Type] -> [Type]
forall a. a -> [a] -> [a]
: [Type]
happy_var_1
        )}

happyReduce_118 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_118 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_1  Int#
41# HappyAbsSyn -> HappyAbsSyn
forall {p}. p -> HappyAbsSyn
happyReduction_118
happyReduction_118 :: p -> HappyAbsSyn
happyReduction_118 p
happy_x_1
         =  Type -> HappyAbsSyn
happyIn46
                 (Type
C.Size
        )

happyReduce_119 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_119 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_1  Int#
41# HappyAbsSyn -> HappyAbsSyn
forall {p}. p -> HappyAbsSyn
happyReduction_119
happyReduction_119 :: p -> HappyAbsSyn
happyReduction_119 p
happy_x_1
         =  Type -> HappyAbsSyn
happyIn46
                 (Type
C.Max
        )

happyReduce_120 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_120 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_1  Int#
41# HappyAbsSyn -> HappyAbsSyn
forall {p}. p -> HappyAbsSyn
happyReduction_120
happyReduction_120 :: p -> HappyAbsSyn
happyReduction_120 p
happy_x_1
         =  Type -> HappyAbsSyn
happyIn46
                 (Type
C.Infty
        )

happyReduce_121 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_121 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_1  Int#
41# HappyAbsSyn -> HappyAbsSyn
happyReduction_121
happyReduction_121 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_121 HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap47
happyOut47 HappyAbsSyn
happy_x_1 of { (HappyWrap47 QName
happy_var_1) -> 
        Type -> HappyAbsSyn
happyIn46
                 (QName -> Type
C.Ident QName
happy_var_1
        )}

happyReduce_122 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_122 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce Int#
5# Int#
41# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_122
happyReduction_122 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_122 (HappyAbsSyn
happy_x_5 `HappyStk`
        HappyAbsSyn
happy_x_4 `HappyStk`
        HappyAbsSyn
happy_x_3 `HappyStk`
        HappyAbsSyn
happy_x_2 `HappyStk`
        HappyAbsSyn
happy_x_1 `HappyStk`
        HappyStk HappyAbsSyn
happyRest)
         = case HappyAbsSyn -> HappyWrap39
happyOut39 HappyAbsSyn
happy_x_2 of { (HappyWrap39 Type
happy_var_2) -> 
        case HappyAbsSyn -> HappyWrap41
happyOut41 HappyAbsSyn
happy_x_4 of { (HappyWrap41 Type
happy_var_4) -> 
        Type -> HappyAbsSyn
happyIn46
                 (Type -> Type -> Type
C.Sing Type
happy_var_2 Type
happy_var_4
        ) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}

happyReduce_123 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_123 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_3  Int#
41# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p} {p}. p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_123
happyReduction_123 :: p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_123 p
happy_x_3
        HappyAbsSyn
happy_x_2
        p
happy_x_1
         =  case HappyAbsSyn -> HappyWrap39
happyOut39 HappyAbsSyn
happy_x_2 of { (HappyWrap39 Type
happy_var_2) -> 
        Type -> HappyAbsSyn
happyIn46
                 (Type
happy_var_2
        )}

happyReduce_124 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_124 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_1  Int#
41# HappyAbsSyn -> HappyAbsSyn
forall {p}. p -> HappyAbsSyn
happyReduction_124
happyReduction_124 :: p -> HappyAbsSyn
happyReduction_124 p
happy_x_1
         =  Type -> HappyAbsSyn
happyIn46
                 (Type
C.Unknown
        )

happyReduce_125 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_125 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_2  Int#
41# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_125
happyReduction_125 :: HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_125 HappyAbsSyn
happy_x_2
        p
happy_x_1
         =  case HappyAbsSyn -> HappyWrap46
happyOut46 HappyAbsSyn
happy_x_2 of { (HappyWrap46 Type
happy_var_2) -> 
        Type -> HappyAbsSyn
happyIn46
                 (Type -> Type
C.Succ Type
happy_var_2
        )}

happyReduce_126 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_126 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_1  Int#
41# HappyAbsSyn -> HappyAbsSyn
happyReduction_126
happyReduction_126 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_126 HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> Token
happyOutTok HappyAbsSyn
happy_x_1 of { (T.Number String
happy_var_1 AlexPosn
_) -> 
        Type -> HappyAbsSyn
happyIn46
                 ((Type -> Type) -> Type -> [Type]
forall a. (a -> a) -> a -> [a]
iterate Type -> Type
C.Succ Type
C.Zero [Type] -> Int -> Type
forall a. HasCallStack => [a] -> Int -> a
!! (String -> Int
forall a. Read a => String -> a
read String
happy_var_1)
        )}

happyReduce_127 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_127 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce Int#
4# Int#
41# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_127
happyReduction_127 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_127 (HappyAbsSyn
happy_x_4 `HappyStk`
        HappyAbsSyn
happy_x_3 `HappyStk`
        HappyAbsSyn
happy_x_2 `HappyStk`
        HappyAbsSyn
happy_x_1 `HappyStk`
        HappyStk HappyAbsSyn
happyRest)
         = case HappyAbsSyn -> HappyWrap48
happyOut48 HappyAbsSyn
happy_x_3 of { (HappyWrap48 [([Name], Type)]
happy_var_3) -> 
        Type -> HappyAbsSyn
happyIn46
                 ([([Name], Type)] -> Type
C.Record [([Name], Type)]
happy_var_3
        ) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}

happyReduce_128 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_128 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_1  Int#
42# HappyAbsSyn -> HappyAbsSyn
happyReduction_128
happyReduction_128 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_128 HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> Token
happyOutTok HappyAbsSyn
happy_x_1 of { (T.QualId (String, String)
happy_var_1 AlexPosn
_) -> 
        QName -> HappyAbsSyn
happyIn47
                 (let (String
m,String
n) = (String, String)
happy_var_1 in Name -> Name -> QName
C.Qual (String -> Name
C.Name String
m) (String -> Name
C.Name String
n)
        )}

happyReduce_129 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_129 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_1  Int#
42# HappyAbsSyn -> HappyAbsSyn
happyReduction_129
happyReduction_129 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_129 HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap24
happyOut24 HappyAbsSyn
happy_x_1 of { (HappyWrap24 Name
happy_var_1) -> 
        QName -> HappyAbsSyn
happyIn47
                 (Name -> QName
C.QName Name
happy_var_1
        )}

happyReduce_130 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_130 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_3  Int#
43# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_130
happyReduction_130 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_130 HappyAbsSyn
happy_x_3
        p
happy_x_2
        HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap49
happyOut49 HappyAbsSyn
happy_x_1 of { (HappyWrap49 ([Name], Type)
happy_var_1) -> 
        case HappyAbsSyn -> HappyWrap48
happyOut48 HappyAbsSyn
happy_x_3 of { (HappyWrap48 [([Name], Type)]
happy_var_3) -> 
        [([Name], Type)] -> HappyAbsSyn
happyIn48
                 (([Name], Type)
happy_var_1 ([Name], Type) -> [([Name], Type)] -> [([Name], Type)]
forall a. a -> [a] -> [a]
: [([Name], Type)]
happy_var_3
        )}}

happyReduce_131 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_131 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_1  Int#
43# HappyAbsSyn -> HappyAbsSyn
happyReduction_131
happyReduction_131 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_131 HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap49
happyOut49 HappyAbsSyn
happy_x_1 of { (HappyWrap49 ([Name], Type)
happy_var_1) -> 
        [([Name], Type)] -> HappyAbsSyn
happyIn48
                 ([([Name], Type)
happy_var_1]
        )}

happyReduce_132 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_132 = Int#
-> HappyAbsSyn
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_0  Int#
43# HappyAbsSyn
happyReduction_132
happyReduction_132 :: HappyAbsSyn
happyReduction_132  =  [([Name], Type)] -> HappyAbsSyn
happyIn48
                 ([]
        )

happyReduce_133 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_133 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_3  Int#
44# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_133
happyReduction_133 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_133 HappyAbsSyn
happy_x_3
        p
happy_x_2
        HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap25
happyOut25 HappyAbsSyn
happy_x_1 of { (HappyWrap25 [Name]
happy_var_1) -> 
        case HappyAbsSyn -> HappyWrap39
happyOut39 HappyAbsSyn
happy_x_3 of { (HappyWrap39 Type
happy_var_3) -> 
        ([Name], Type) -> HappyAbsSyn
happyIn49
                 (([Name]
happy_var_1,Type
happy_var_3)
        )}}

happyReduce_134 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_134 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_3  Int#
45# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_134
happyReduction_134 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_134 HappyAbsSyn
happy_x_3
        p
happy_x_2
        HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap24
happyOut24 HappyAbsSyn
happy_x_1 of { (HappyWrap24 Name
happy_var_1) -> 
        case HappyAbsSyn -> HappyWrap41
happyOut41 HappyAbsSyn
happy_x_3 of { (HappyWrap41 Type
happy_var_3) -> 
        TypeSig -> HappyAbsSyn
happyIn50
                 (Name -> Type -> TypeSig
C.TypeSig Name
happy_var_1 Type
happy_var_3
        )}}

happyReduce_135 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_135 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce Int#
4# Int#
46# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_135
happyReduction_135 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_135 (HappyAbsSyn
happy_x_4 `HappyStk`
        HappyAbsSyn
happy_x_3 `HappyStk`
        HappyAbsSyn
happy_x_2 `HappyStk`
        HappyAbsSyn
happy_x_1 `HappyStk`
        HappyStk HappyAbsSyn
happyRest)
         = case HappyAbsSyn -> HappyWrap24
happyOut24 HappyAbsSyn
happy_x_1 of { (HappyWrap24 Name
happy_var_1) -> 
        case HappyAbsSyn -> HappyWrap32
happyOut32 HappyAbsSyn
happy_x_2 of { (HappyWrap32 Telescope
happy_var_2) -> 
        case HappyAbsSyn -> HappyWrap41
happyOut41 HappyAbsSyn
happy_x_4 of { (HappyWrap41 Type
happy_var_4) -> 
        Constructor -> HappyAbsSyn
happyIn51
                 (Name -> Telescope -> Maybe Type -> Constructor
C.Constructor Name
happy_var_1 Telescope
happy_var_2 (Type -> Maybe Type
forall a. a -> Maybe a
Just Type
happy_var_4)
        ) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}}

happyReduce_136 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_136 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_2  Int#
46# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_136
happyReduction_136 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_136 HappyAbsSyn
happy_x_2
        HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap24
happyOut24 HappyAbsSyn
happy_x_1 of { (HappyWrap24 Name
happy_var_1) -> 
        case HappyAbsSyn -> HappyWrap32
happyOut32 HappyAbsSyn
happy_x_2 of { (HappyWrap32 Telescope
happy_var_2) -> 
        Constructor -> HappyAbsSyn
happyIn51
                 (Name -> Telescope -> Maybe Type -> Constructor
C.Constructor Name
happy_var_1 Telescope
happy_var_2 Maybe Type
forall a. Maybe a
Nothing
        )}}

happyReduce_137 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_137 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_3  Int#
47# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_137
happyReduction_137 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_137 HappyAbsSyn
happy_x_3
        p
happy_x_2
        HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap52
happyOut52 HappyAbsSyn
happy_x_1 of { (HappyWrap52 [Constructor]
happy_var_1) -> 
        case HappyAbsSyn -> HappyWrap51
happyOut51 HappyAbsSyn
happy_x_3 of { (HappyWrap51 Constructor
happy_var_3) -> 
        [Constructor] -> HappyAbsSyn
happyIn52
                 (Constructor
happy_var_3 Constructor -> [Constructor] -> [Constructor]
forall a. a -> [a] -> [a]
: [Constructor]
happy_var_1
        )}}

happyReduce_138 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_138 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_2  Int#
47# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_138
happyReduction_138 :: p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_138 p
happy_x_2
        HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap52
happyOut52 HappyAbsSyn
happy_x_1 of { (HappyWrap52 [Constructor]
happy_var_1) -> 
        [Constructor] -> HappyAbsSyn
happyIn52
                 ([Constructor]
happy_var_1
        )}

happyReduce_139 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_139 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_1  Int#
47# HappyAbsSyn -> HappyAbsSyn
happyReduction_139
happyReduction_139 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_139 HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap51
happyOut51 HappyAbsSyn
happy_x_1 of { (HappyWrap51 Constructor
happy_var_1) -> 
        [Constructor] -> HappyAbsSyn
happyIn52
                 ([Constructor
happy_var_1]
        )}

happyReduce_140 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_140 = Int#
-> HappyAbsSyn
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_0  Int#
47# HappyAbsSyn
happyReduction_140
happyReduction_140 :: HappyAbsSyn
happyReduction_140  =  [Constructor] -> HappyAbsSyn
happyIn52
                 ([]
        )

happyReduce_141 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_141 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce Int#
5# Int#
48# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_141
happyReduction_141 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_141 (HappyAbsSyn
happy_x_5 `HappyStk`
        HappyAbsSyn
happy_x_4 `HappyStk`
        HappyAbsSyn
happy_x_3 `HappyStk`
        HappyAbsSyn
happy_x_2 `HappyStk`
        HappyAbsSyn
happy_x_1 `HappyStk`
        HappyStk HappyAbsSyn
happyRest)
         = case HappyAbsSyn -> HappyWrap57
happyOut57 HappyAbsSyn
happy_x_1 of { (HappyWrap57 Pattern
happy_var_1) -> 
        case HappyAbsSyn -> HappyWrap39
happyOut39 HappyAbsSyn
happy_x_3 of { (HappyWrap39 Type
happy_var_3) -> 
        case HappyAbsSyn -> HappyWrap53
happyOut53 HappyAbsSyn
happy_x_5 of { (HappyWrap53 [Clause]
happy_var_5) -> 
        [Clause] -> HappyAbsSyn
happyIn53
                 ((Maybe Name -> [Pattern] -> Maybe Type -> Clause
C.Clause Maybe Name
forall a. Maybe a
Nothing [Pattern
happy_var_1] (Type -> Maybe Type
forall a. a -> Maybe a
Just Type
happy_var_3)) Clause -> [Clause] -> [Clause]
forall a. a -> [a] -> [a]
: [Clause]
happy_var_5
        ) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}}

happyReduce_142 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_142 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_3  Int#
48# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_142
happyReduction_142 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_142 HappyAbsSyn
happy_x_3
        p
happy_x_2
        HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap57
happyOut57 HappyAbsSyn
happy_x_1 of { (HappyWrap57 Pattern
happy_var_1) -> 
        case HappyAbsSyn -> HappyWrap39
happyOut39 HappyAbsSyn
happy_x_3 of { (HappyWrap39 Type
happy_var_3) -> 
        [Clause] -> HappyAbsSyn
happyIn53
                 ((Maybe Name -> [Pattern] -> Maybe Type -> Clause
C.Clause Maybe Name
forall a. Maybe a
Nothing [Pattern
happy_var_1] (Type -> Maybe Type
forall a. a -> Maybe a
Just Type
happy_var_3)) Clause -> [Clause] -> [Clause]
forall a. a -> [a] -> [a]
: []
        )}}

happyReduce_143 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_143 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_3  Int#
48# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_143
happyReduction_143 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_143 HappyAbsSyn
happy_x_3
        p
happy_x_2
        HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap57
happyOut57 HappyAbsSyn
happy_x_1 of { (HappyWrap57 Pattern
happy_var_1) -> 
        case HappyAbsSyn -> HappyWrap53
happyOut53 HappyAbsSyn
happy_x_3 of { (HappyWrap53 [Clause]
happy_var_3) -> 
        [Clause] -> HappyAbsSyn
happyIn53
                 ((Maybe Name -> [Pattern] -> Maybe Type -> Clause
C.Clause Maybe Name
forall a. Maybe a
Nothing [Pattern
happy_var_1] Maybe Type
forall a. Maybe a
Nothing) Clause -> [Clause] -> [Clause]
forall a. a -> [a] -> [a]
: [Clause]
happy_var_3
        )}}

happyReduce_144 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_144 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_1  Int#
48# HappyAbsSyn -> HappyAbsSyn
happyReduction_144
happyReduction_144 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_144 HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap57
happyOut57 HappyAbsSyn
happy_x_1 of { (HappyWrap57 Pattern
happy_var_1) -> 
        [Clause] -> HappyAbsSyn
happyIn53
                 ((Maybe Name -> [Pattern] -> Maybe Type -> Clause
C.Clause Maybe Name
forall a. Maybe a
Nothing [Pattern
happy_var_1] Maybe Type
forall a. Maybe a
Nothing) Clause -> [Clause] -> [Clause]
forall a. a -> [a] -> [a]
: []
        )}

happyReduce_145 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_145 = Int#
-> HappyAbsSyn
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_0  Int#
48# HappyAbsSyn
happyReduction_145
happyReduction_145 :: HappyAbsSyn
happyReduction_145  =  [Clause] -> HappyAbsSyn
happyIn53
                 ([]
        )

happyReduce_146 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_146 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce Int#
4# Int#
49# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_146
happyReduction_146 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_146 (HappyAbsSyn
happy_x_4 `HappyStk`
        HappyAbsSyn
happy_x_3 `HappyStk`
        HappyAbsSyn
happy_x_2 `HappyStk`
        HappyAbsSyn
happy_x_1 `HappyStk`
        HappyStk HappyAbsSyn
happyRest)
         = case HappyAbsSyn -> HappyWrap24
happyOut24 HappyAbsSyn
happy_x_1 of { (HappyWrap24 Name
happy_var_1) -> 
        case HappyAbsSyn -> HappyWrap55
happyOut55 HappyAbsSyn
happy_x_2 of { (HappyWrap55 [Pattern]
happy_var_2) -> 
        case HappyAbsSyn -> HappyWrap39
happyOut39 HappyAbsSyn
happy_x_4 of { (HappyWrap39 Type
happy_var_4) -> 
        Clause -> HappyAbsSyn
happyIn54
                 (Maybe Name -> [Pattern] -> Maybe Type -> Clause
C.Clause (Name -> Maybe Name
forall a. a -> Maybe a
Just Name
happy_var_1) [Pattern]
happy_var_2 (Type -> Maybe Type
forall a. a -> Maybe a
Just Type
happy_var_4)
        ) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}}

happyReduce_147 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_147 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_2  Int#
49# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_147
happyReduction_147 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_147 HappyAbsSyn
happy_x_2
        HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap24
happyOut24 HappyAbsSyn
happy_x_1 of { (HappyWrap24 Name
happy_var_1) -> 
        case HappyAbsSyn -> HappyWrap55
happyOut55 HappyAbsSyn
happy_x_2 of { (HappyWrap55 [Pattern]
happy_var_2) -> 
        Clause -> HappyAbsSyn
happyIn54
                 (Maybe Name -> [Pattern] -> Maybe Type -> Clause
C.Clause (Name -> Maybe Name
forall a. a -> Maybe a
Just Name
happy_var_1) [Pattern]
happy_var_2 Maybe Type
forall a. Maybe a
Nothing
        )}}

happyReduce_148 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_148 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_1  Int#
50# HappyAbsSyn -> HappyAbsSyn
happyReduction_148
happyReduction_148 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_148 HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap56
happyOut56 HappyAbsSyn
happy_x_1 of { (HappyWrap56 [Pattern]
happy_var_1) -> 
        [Pattern] -> HappyAbsSyn
happyIn55
                 ([Pattern] -> [Pattern]
forall a. [a] -> [a]
reverse [Pattern]
happy_var_1
        )}

happyReduce_149 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_149 = Int#
-> HappyAbsSyn
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_0  Int#
51# HappyAbsSyn
happyReduction_149
happyReduction_149 :: HappyAbsSyn
happyReduction_149  =  [Pattern] -> HappyAbsSyn
happyIn56
                 ([]
        )

happyReduce_150 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_150 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_2  Int#
51# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_150
happyReduction_150 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_150 HappyAbsSyn
happy_x_2
        HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap56
happyOut56 HappyAbsSyn
happy_x_1 of { (HappyWrap56 [Pattern]
happy_var_1) -> 
        case HappyAbsSyn -> HappyWrap57
happyOut57 HappyAbsSyn
happy_x_2 of { (HappyWrap57 Pattern
happy_var_2) -> 
        [Pattern] -> HappyAbsSyn
happyIn56
                 (Pattern
happy_var_2 Pattern -> [Pattern] -> [Pattern]
forall a. a -> [a] -> [a]
: [Pattern]
happy_var_1
        )}}

happyReduce_151 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_151 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_3  Int#
51# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_151
happyReduction_151 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_151 HappyAbsSyn
happy_x_3
        p
happy_x_2
        HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap56
happyOut56 HappyAbsSyn
happy_x_1 of { (HappyWrap56 [Pattern]
happy_var_1) -> 
        case HappyAbsSyn -> HappyWrap59
happyOut59 HappyAbsSyn
happy_x_3 of { (HappyWrap59 Pattern
happy_var_3) -> 
        [Pattern] -> HappyAbsSyn
happyIn56
                 (Pattern
happy_var_3 Pattern -> [Pattern] -> [Pattern]
forall a. a -> [a] -> [a]
: [Pattern]
happy_var_1
        )}}

happyReduce_152 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_152 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_2  Int#
52# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p} {p}. p -> p -> HappyAbsSyn
happyReduction_152
happyReduction_152 :: p -> p -> HappyAbsSyn
happyReduction_152 p
happy_x_2
        p
happy_x_1
         =  Pattern -> HappyAbsSyn
happyIn57
                 (Pattern
C.AbsurdP
        )

happyReduce_153 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_153 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_3  Int#
52# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p} {p}. p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_153
happyReduction_153 :: p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_153 p
happy_x_3
        HappyAbsSyn
happy_x_2
        p
happy_x_1
         =  case HappyAbsSyn -> HappyWrap58
happyOut58 HappyAbsSyn
happy_x_2 of { (HappyWrap58 Pattern
happy_var_2) -> 
        Pattern -> HappyAbsSyn
happyIn57
                 (Pattern
happy_var_2
        )}

happyReduce_154 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_154 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_1  Int#
52# HappyAbsSyn -> HappyAbsSyn
happyReduction_154
happyReduction_154 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_154 HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap61
happyOut61 HappyAbsSyn
happy_x_1 of { (HappyWrap61 Pattern
happy_var_1) -> 
        Pattern -> HappyAbsSyn
happyIn57
                 (Pattern
happy_var_1
        )}

happyReduce_155 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_155 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_2  Int#
52# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_155
happyReduction_155 :: HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_155 HappyAbsSyn
happy_x_2
        p
happy_x_1
         =  case HappyAbsSyn -> HappyWrap57
happyOut57 HappyAbsSyn
happy_x_2 of { (HappyWrap57 Pattern
happy_var_2) -> 
        Pattern -> HappyAbsSyn
happyIn57
                 (Pattern -> Pattern
C.SuccP Pattern
happy_var_2
        )}

happyReduce_156 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_156 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_2  Int#
52# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p} {p}. p -> p -> HappyAbsSyn
happyReduction_156
happyReduction_156 :: p -> p -> HappyAbsSyn
happyReduction_156 p
happy_x_2
        p
happy_x_1
         =  Pattern -> HappyAbsSyn
happyIn57
                 (Type -> Pattern
C.DotP (Type -> Type
C.Set Type
C.Zero)
        )

happyReduce_157 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_157 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_2  Int#
52# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_157
happyReduction_157 :: HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_157 HappyAbsSyn
happy_x_2
        p
happy_x_1
         =  case HappyAbsSyn -> HappyWrap46
happyOut46 HappyAbsSyn
happy_x_2 of { (HappyWrap46 Type
happy_var_2) -> 
        Pattern -> HappyAbsSyn
happyIn57
                 (Type -> Pattern
C.DotP Type
happy_var_2
        )}

happyReduce_158 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_158 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_3  Int#
53# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_158
happyReduction_158 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_158 HappyAbsSyn
happy_x_3
        p
happy_x_2
        HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap59
happyOut59 HappyAbsSyn
happy_x_1 of { (HappyWrap59 Pattern
happy_var_1) -> 
        case HappyAbsSyn -> HappyWrap58
happyOut58 HappyAbsSyn
happy_x_3 of { (HappyWrap58 Pattern
happy_var_3) -> 
        Pattern -> HappyAbsSyn
happyIn58
                 (Pattern -> Pattern -> Pattern
C.PairP Pattern
happy_var_1 Pattern
happy_var_3
        )}}

happyReduce_159 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_159 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_1  Int#
53# HappyAbsSyn -> HappyAbsSyn
happyReduction_159
happyReduction_159 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_159 HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap59
happyOut59 HappyAbsSyn
happy_x_1 of { (HappyWrap59 Pattern
happy_var_1) -> 
        Pattern -> HappyAbsSyn
happyIn58
                 (Pattern
happy_var_1
        )}

happyReduce_160 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_160 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_1  Int#
54# HappyAbsSyn -> HappyAbsSyn
happyReduction_160
happyReduction_160 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_160 HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap60
happyOut60 HappyAbsSyn
happy_x_1 of { (HappyWrap60 Pattern
happy_var_1) -> 
        Pattern -> HappyAbsSyn
happyIn59
                 (Pattern
happy_var_1
        )}

happyReduce_161 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_161 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_3  Int#
54# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_161
happyReduction_161 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_161 HappyAbsSyn
happy_x_3
        p
happy_x_2
        HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap46
happyOut46 HappyAbsSyn
happy_x_1 of { (HappyWrap46 Type
happy_var_1) -> 
        case HappyAbsSyn -> HappyWrap24
happyOut24 HappyAbsSyn
happy_x_3 of { (HappyWrap24 Name
happy_var_3) -> 
        Pattern -> HappyAbsSyn
happyIn59
                 (Type -> Name -> Pattern
C.SizeP Type
happy_var_1 Name
happy_var_3
        )}}

happyReduce_162 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_162 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_3  Int#
54# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_162
happyReduction_162 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_162 HappyAbsSyn
happy_x_3
        p
happy_x_2
        HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap24
happyOut24 HappyAbsSyn
happy_x_1 of { (HappyWrap24 Name
happy_var_1) -> 
        case HappyAbsSyn -> HappyWrap46
happyOut46 HappyAbsSyn
happy_x_3 of { (HappyWrap46 Type
happy_var_3) -> 
        Pattern -> HappyAbsSyn
happyIn59
                 (Type -> Name -> Pattern
C.SizeP Type
happy_var_3 Name
happy_var_1
        )}}

happyReduce_163 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_163 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_1  Int#
54# HappyAbsSyn -> HappyAbsSyn
happyReduction_163
happyReduction_163 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_163 HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap57
happyOut57 HappyAbsSyn
happy_x_1 of { (HappyWrap57 Pattern
happy_var_1) -> 
        Pattern -> HappyAbsSyn
happyIn59
                 (Pattern
happy_var_1
        )}

happyReduce_164 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_164 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_3  Int#
54# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_164
happyReduction_164 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_164 HappyAbsSyn
happy_x_3
        p
happy_x_2
        HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap60
happyOut60 HappyAbsSyn
happy_x_1 of { (HappyWrap60 Pattern
happy_var_1) -> 
        case HappyAbsSyn -> HappyWrap59
happyOut59 HappyAbsSyn
happy_x_3 of { (HappyWrap59 Pattern
happy_var_3) -> 
        Pattern -> HappyAbsSyn
happyIn59
                 (Pattern -> [Pattern] -> Pattern
patApp Pattern
happy_var_1 [Pattern
happy_var_3]
        )}}

happyReduce_165 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_165 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_2  Int#
55# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_165
happyReduction_165 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_165 HappyAbsSyn
happy_x_2
        HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap61
happyOut61 HappyAbsSyn
happy_x_1 of { (HappyWrap61 Pattern
happy_var_1) -> 
        case HappyAbsSyn -> HappyWrap57
happyOut57 HappyAbsSyn
happy_x_2 of { (HappyWrap57 Pattern
happy_var_2) -> 
        Pattern -> HappyAbsSyn
happyIn60
                 (Pattern -> [Pattern] -> Pattern
patApp Pattern
happy_var_1 [Pattern
happy_var_2]
        )}}

happyReduce_166 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_166 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_2  Int#
55# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_166
happyReduction_166 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_166 HappyAbsSyn
happy_x_2
        HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap60
happyOut60 HappyAbsSyn
happy_x_1 of { (HappyWrap60 Pattern
happy_var_1) -> 
        case HappyAbsSyn -> HappyWrap57
happyOut57 HappyAbsSyn
happy_x_2 of { (HappyWrap57 Pattern
happy_var_2) -> 
        Pattern -> HappyAbsSyn
happyIn60
                 (Pattern -> [Pattern] -> Pattern
patApp Pattern
happy_var_1 [Pattern
happy_var_2]
        )}}

happyReduce_167 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_167 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_1  Int#
56# HappyAbsSyn -> HappyAbsSyn
happyReduction_167
happyReduction_167 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_167 HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap24
happyOut24 HappyAbsSyn
happy_x_1 of { (HappyWrap24 Name
happy_var_1) -> 
        Pattern -> HappyAbsSyn
happyIn61
                 (QName -> Pattern
C.IdentP (Name -> QName
C.QName Name
happy_var_1)
        )}

happyReduce_168 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_168 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_2  Int#
56# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_168
happyReduction_168 :: HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_168 HappyAbsSyn
happy_x_2
        p
happy_x_1
         =  case HappyAbsSyn -> HappyWrap24
happyOut24 HappyAbsSyn
happy_x_2 of { (HappyWrap24 Name
happy_var_2) -> 
        Pattern -> HappyAbsSyn
happyIn61
                 (Bool -> QName -> [Pattern] -> Pattern
C.ConP Bool
True (Name -> QName
C.QName Name
happy_var_2) []
        )}

happyReduce_169 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_169 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_1  Int#
57# HappyAbsSyn -> HappyAbsSyn
happyReduction_169
happyReduction_169 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_169 HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap63
happyOut63 HappyAbsSyn
happy_x_1 of { (HappyWrap63 [Clause]
happy_var_1) -> 
        [Clause] -> HappyAbsSyn
happyIn62
                 ([Clause] -> [Clause]
forall a. [a] -> [a]
reverse [Clause]
happy_var_1
        )}

happyReduce_170 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_170 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_3  Int#
58# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_170
happyReduction_170 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_170 HappyAbsSyn
happy_x_3
        p
happy_x_2
        HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap63
happyOut63 HappyAbsSyn
happy_x_1 of { (HappyWrap63 [Clause]
happy_var_1) -> 
        case HappyAbsSyn -> HappyWrap54
happyOut54 HappyAbsSyn
happy_x_3 of { (HappyWrap54 Clause
happy_var_3) -> 
        [Clause] -> HappyAbsSyn
happyIn63
                 (Clause
happy_var_3 Clause -> [Clause] -> [Clause]
forall a. a -> [a] -> [a]
: [Clause]
happy_var_1
        )}}

happyReduce_171 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_171 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_2  Int#
58# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_171
happyReduction_171 :: p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_171 p
happy_x_2
        HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap63
happyOut63 HappyAbsSyn
happy_x_1 of { (HappyWrap63 [Clause]
happy_var_1) -> 
        [Clause] -> HappyAbsSyn
happyIn63
                 ([Clause]
happy_var_1
        )}

happyReduce_172 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_172 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_1  Int#
58# HappyAbsSyn -> HappyAbsSyn
happyReduction_172
happyReduction_172 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_172 HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap54
happyOut54 HappyAbsSyn
happy_x_1 of { (HappyWrap54 Clause
happy_var_1) -> 
        [Clause] -> HappyAbsSyn
happyIn63
                 ([Clause
happy_var_1]
        )}

happyReduce_173 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_173 = Int#
-> HappyAbsSyn
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_0  Int#
58# HappyAbsSyn
happyReduction_173
happyReduction_173 :: HappyAbsSyn
happyReduction_173  =  [Clause] -> HappyAbsSyn
happyIn63
                 ([]
        )

happyReduce_174 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_174 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce Int#
5# Int#
59# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_174
happyReduction_174 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_174 (HappyAbsSyn
happy_x_5 `HappyStk`
        HappyAbsSyn
happy_x_4 `HappyStk`
        HappyAbsSyn
happy_x_3 `HappyStk`
        HappyAbsSyn
happy_x_2 `HappyStk`
        HappyAbsSyn
happy_x_1 `HappyStk`
        HappyStk HappyAbsSyn
happyRest)
         = case HappyAbsSyn -> HappyWrap26
happyOut26 HappyAbsSyn
happy_x_2 of { (HappyWrap26 [Name]
happy_var_2) -> 
        case HappyAbsSyn -> HappyWrap41
happyOut41 HappyAbsSyn
happy_x_4 of { (HappyWrap41 Type
happy_var_4) -> 
        TBind -> HappyAbsSyn
happyIn64
                 (Dec -> [Name] -> Type -> TBind
forall a. Dec -> [Name] -> a -> TBinding a
C.TBind (Pol -> Dec
forall pos. pos -> Decoration pos
Dec Pol
Default) [Name]
happy_var_2 Type
happy_var_4
        ) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}

happyReduce_175 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_175 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce Int#
5# Int#
59# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_175
happyReduction_175 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_175 (HappyAbsSyn
happy_x_5 `HappyStk`
        HappyAbsSyn
happy_x_4 `HappyStk`
        HappyAbsSyn
happy_x_3 `HappyStk`
        HappyAbsSyn
happy_x_2 `HappyStk`
        HappyAbsSyn
happy_x_1 `HappyStk`
        HappyStk HappyAbsSyn
happyRest)
         = case HappyAbsSyn -> HappyWrap26
happyOut26 HappyAbsSyn
happy_x_2 of { (HappyWrap26 [Name]
happy_var_2) -> 
        case HappyAbsSyn -> HappyWrap41
happyOut41 HappyAbsSyn
happy_x_4 of { (HappyWrap41 Type
happy_var_4) -> 
        TBind -> HappyAbsSyn
happyIn64
                 (Dec -> [Name] -> Type -> TBind
forall a. Dec -> [Name] -> a -> TBinding a
C.TBind Dec
A.irrelevantDec [Name]
happy_var_2 Type
happy_var_4
        ) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}

happyReduce_176 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_176 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce Int#
6# Int#
59# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_176
happyReduction_176 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_176 (HappyAbsSyn
happy_x_6 `HappyStk`
        HappyAbsSyn
happy_x_5 `HappyStk`
        HappyAbsSyn
happy_x_4 `HappyStk`
        HappyAbsSyn
happy_x_3 `HappyStk`
        HappyAbsSyn
happy_x_2 `HappyStk`
        HappyAbsSyn
happy_x_1 `HappyStk`
        HappyStk HappyAbsSyn
happyRest)
         = case HappyAbsSyn -> HappyWrap27
happyOut27 HappyAbsSyn
happy_x_1 of { (HappyWrap27 Pol
happy_var_1) -> 
        case HappyAbsSyn -> HappyWrap26
happyOut26 HappyAbsSyn
happy_x_3 of { (HappyWrap26 [Name]
happy_var_3) -> 
        case HappyAbsSyn -> HappyWrap41
happyOut41 HappyAbsSyn
happy_x_5 of { (HappyWrap41 Type
happy_var_5) -> 
        TBind -> HappyAbsSyn
happyIn64
                 (Dec -> [Name] -> Type -> TBind
forall a. Dec -> [Name] -> a -> TBinding a
C.TBind (Pol -> Dec
forall pos. pos -> Decoration pos
Dec Pol
happy_var_1) [Name]
happy_var_3 Type
happy_var_5
        ) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}}

happyReduce_177 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_177 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce Int#
6# Int#
59# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_177
happyReduction_177 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_177 (HappyAbsSyn
happy_x_6 `HappyStk`
        HappyAbsSyn
happy_x_5 `HappyStk`
        HappyAbsSyn
happy_x_4 `HappyStk`
        HappyAbsSyn
happy_x_3 `HappyStk`
        HappyAbsSyn
happy_x_2 `HappyStk`
        HappyAbsSyn
happy_x_1 `HappyStk`
        HappyStk HappyAbsSyn
happyRest)
         = case HappyAbsSyn -> HappyWrap26
happyOut26 HappyAbsSyn
happy_x_3 of { (HappyWrap26 [Name]
happy_var_3) -> 
        case HappyAbsSyn -> HappyWrap41
happyOut41 HappyAbsSyn
happy_x_5 of { (HappyWrap41 Type
happy_var_5) -> 
        TBind -> HappyAbsSyn
happyIn64
                 (Dec -> [Name] -> Type -> TBind
forall a. Dec -> [Name] -> a -> TBinding a
C.TBind (Pol -> Dec
forall pos. pos -> Decoration pos
Dec Pol
SPos) [Name]
happy_var_3 Type
happy_var_5
        ) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}

happyReduce_178 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_178 = Int#
-> HappyAbsSyn
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_0  Int#
60# HappyAbsSyn
happyReduction_178
happyReduction_178 :: HappyAbsSyn
happyReduction_178  =  Telescope -> HappyAbsSyn
happyIn65
                 ([]
        )

happyReduce_179 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce_179 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_2  Int#
60# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_179
happyReduction_179 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_179 HappyAbsSyn
happy_x_2
        HappyAbsSyn
happy_x_1
         =  case HappyAbsSyn -> HappyWrap64
happyOut64 HappyAbsSyn
happy_x_1 of { (HappyWrap64 TBind
happy_var_1) -> 
        case HappyAbsSyn -> HappyWrap65
happyOut65 HappyAbsSyn
happy_x_2 of { (HappyWrap65 Telescope
happy_var_2) -> 
        Telescope -> HappyAbsSyn
happyIn65
                 (TBind
happy_var_1 TBind -> Telescope -> Telescope
forall a. a -> [a] -> [a]
: Telescope
happy_var_2
        )}}

happyTerminalToTok :: Token -> Int#
happyTerminalToTok Token
term = case Token
term of {
        T.Id String
happy_dollar_dollar AlexPosn
_ -> Int#
2#;
        T.QualId (String, String)
happy_dollar_dollar AlexPosn
_ -> Int#
3#;
        T.Number String
happy_dollar_dollar AlexPosn
_ -> Int#
4#;
        T.Data AlexPosn
_ -> Int#
5#;
        T.CoData AlexPosn
_ -> Int#
6#;
        T.Record AlexPosn
_ -> Int#
7#;
        T.Sized AlexPosn
_ -> Int#
8#;
        T.Fields AlexPosn
_ -> Int#
9#;
        T.Mutual AlexPosn
_ -> Int#
10#;
        T.Fun AlexPosn
_ -> Int#
11#;
        T.CoFun AlexPosn
_ -> Int#
12#;
        T.Pattern AlexPosn
_ -> Int#
13#;
        T.Case AlexPosn
_ -> Int#
14#;
        T.Def AlexPosn
_ -> Int#
15#;
        T.Let AlexPosn
_ -> Int#
16#;
        T.In AlexPosn
_ -> Int#
17#;
        T.Eval AlexPosn
_ -> Int#
18#;
        T.Fail AlexPosn
_ -> Int#
19#;
        T.Check AlexPosn
_ -> Int#
20#;
        T.TrustMe AlexPosn
_ -> Int#
21#;
        T.Impredicative AlexPosn
_ -> Int#
22#;
        T.Type AlexPosn
_ -> Int#
23#;
        T.Set AlexPosn
_ -> Int#
24#;
        T.CoSet AlexPosn
_ -> Int#
25#;
        T.Size AlexPosn
_ -> Int#
26#;
        T.Infty AlexPosn
_ -> Int#
27#;
        T.Succ AlexPosn
_ -> Int#
28#;
        T.Max AlexPosn
_ -> Int#
29#;
        T.LTri AlexPosn
_ -> Int#
30#;
        T.RTri AlexPosn
_ -> Int#
31#;
        T.AngleOpen AlexPosn
_ -> Int#
32#;
        T.AngleClose AlexPosn
_ -> Int#
33#;
        T.BrOpen AlexPosn
_ -> Int#
34#;
        T.BrClose AlexPosn
_ -> Int#
35#;
        T.BracketOpen AlexPosn
_ -> Int#
36#;
        T.BracketClose AlexPosn
_ -> Int#
37#;
        T.PrOpen AlexPosn
_ -> Int#
38#;
        T.PrClose AlexPosn
_ -> Int#
39#;
        T.Bar AlexPosn
_ -> Int#
40#;
        T.Comma AlexPosn
_ -> Int#
41#;
        T.Sem AlexPosn
_ -> Int#
42#;
        T.Col AlexPosn
_ -> Int#
43#;
        T.Dot AlexPosn
_ -> Int#
44#;
        T.Arrow AlexPosn
_ -> Int#
45#;
        T.Leq AlexPosn
_ -> Int#
46#;
        T.Eq AlexPosn
_ -> Int#
47#;
        T.PlusPlus AlexPosn
_ -> Int#
48#;
        T.Plus AlexPosn
_ -> Int#
49#;
        T.Minus AlexPosn
_ -> Int#
50#;
        T.Slash AlexPosn
_ -> Int#
51#;
        T.Times AlexPosn
_ -> Int#
52#;
        T.Hat AlexPosn
_ -> Int#
53#;
        T.Amp AlexPosn
_ -> Int#
54#;
        T.Lam AlexPosn
_ -> Int#
55#;
        T.Underscore AlexPosn
_ -> Int#
56#;
        Token
_ -> Int#
-1#;
        }
{-# NOINLINE happyTerminalToTok #-}

happyLex :: (t -> [a] -> t) -> (Int# -> Token -> [Token] -> t) -> [Token] -> t
happyLex t -> [a] -> t
kend  Int# -> Token -> [Token] -> t
_kmore []       = t -> [a] -> t
kend t
forall a. a
notHappyAtAll []
happyLex t -> [a] -> t
_kend Int# -> Token -> [Token] -> t
kmore  (Token
tk:[Token]
tks) = Int# -> Token -> [Token] -> t
kmore (Token -> Int#
happyTerminalToTok Token
tk) Token
tk [Token]
tks
{-# INLINE happyLex #-}

happyNewToken :: Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyNewToken Int#
action Happy_IntList
sts HappyStk HappyAbsSyn
stk = (ZonkAny 0 -> [Token] -> HappyIdentity HappyAbsSyn)
-> (Int# -> Token -> [Token] -> HappyIdentity HappyAbsSyn)
-> [Token]
-> HappyIdentity HappyAbsSyn
forall {t} {a} {t}.
(t -> [a] -> t) -> (Int# -> Token -> [Token] -> t) -> [Token] -> t
happyLex (\ZonkAny 0
tk -> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyDoAction Int#
57# Token
forall a. a
notHappyAtAll Int#
action Happy_IntList
sts HappyStk HappyAbsSyn
stk) (\Int#
i Token
tk -> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyDoAction Int#
i Token
tk Int#
action Happy_IntList
sts HappyStk HappyAbsSyn
stk)

happyReport :: Int#
-> Token
-> [String]
-> ([Token] -> HappyIdentity a)
-> [Token]
-> HappyIdentity a
happyReport Int#
57# Token
tk [String]
explist [Token] -> HappyIdentity a
resume [Token]
tks = [Token]
-> [String] -> ([Token] -> HappyIdentity a) -> HappyIdentity a
forall a.
[Token]
-> [String] -> ([Token] -> HappyIdentity a) -> HappyIdentity a
happyReport' [Token]
tks [String]
explist [Token] -> HappyIdentity a
resume
happyReport Int#
_ Token
tk [String]
explist [Token] -> HappyIdentity a
resume [Token]
tks = [Token]
-> [String] -> ([Token] -> HappyIdentity a) -> HappyIdentity a
forall a.
[Token]
-> [String] -> ([Token] -> HappyIdentity a) -> HappyIdentity a
happyReport' (Token
tkToken -> [Token] -> [Token]
forall a. a -> [a] -> [a]
:[Token]
tks) [String]
explist (\[Token]
tks -> [Token] -> HappyIdentity a
resume ([Token] -> [Token]
forall a. HasCallStack => [a] -> [a]
Happy_Prelude.tail [Token]
tks))


newtype HappyIdentity a = HappyIdentity a
happyIdentity :: a -> HappyIdentity a
happyIdentity = a -> HappyIdentity a
forall a. a -> HappyIdentity a
HappyIdentity
happyRunIdentity :: HappyIdentity a -> a
happyRunIdentity (HappyIdentity a
a) = a
a

instance Happy_Prelude.Functor HappyIdentity where
    fmap :: forall a b. (a -> b) -> HappyIdentity a -> HappyIdentity b
fmap a -> b
f (HappyIdentity a
a) = b -> HappyIdentity b
forall a. a -> HappyIdentity a
HappyIdentity (a -> b
f a
a)

instance Applicative HappyIdentity where
    pure :: forall a. a -> HappyIdentity a
pure  = a -> HappyIdentity a
forall a. a -> HappyIdentity a
HappyIdentity
    <*> :: forall a b.
HappyIdentity (a -> b) -> HappyIdentity a -> HappyIdentity b
(<*>) = HappyIdentity (a -> b) -> HappyIdentity a -> HappyIdentity b
forall (m :: * -> *) a b. Monad m => m (a -> b) -> m a -> m b
ap
instance Happy_Prelude.Monad HappyIdentity where
    return :: forall a. a -> HappyIdentity a
return = a -> HappyIdentity a
forall a. a -> HappyIdentity a
forall (f :: * -> *) a. Applicative f => a -> f a
pure
    (HappyIdentity a
p) >>= :: forall a b.
HappyIdentity a -> (a -> HappyIdentity b) -> HappyIdentity b
>>= a -> HappyIdentity b
q = a -> HappyIdentity b
q a
p

happyThen :: () => (HappyIdentity a) -> (a -> (HappyIdentity b)) -> (HappyIdentity b)
happyThen :: forall a b.
HappyIdentity a -> (a -> HappyIdentity b) -> HappyIdentity b
happyThen = HappyIdentity a -> (a -> HappyIdentity b) -> HappyIdentity b
forall a b.
HappyIdentity a -> (a -> HappyIdentity b) -> HappyIdentity b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
(Happy_Prelude.>>=)
happyReturn :: () => a -> (HappyIdentity a)
happyReturn :: forall a. a -> HappyIdentity a
happyReturn = (a -> HappyIdentity a
forall a. a -> HappyIdentity a
forall (m :: * -> *) a. Monad m => a -> m a
Happy_Prelude.return)
happyThen1 :: m t -> (t -> t -> m b) -> t -> m b
happyThen1 m t
m t -> t -> m b
k t
tks = m t -> (t -> m b) -> m b
forall a b. m a -> (a -> m b) -> m b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
(Happy_Prelude.>>=) m t
m (\t
a -> t -> t -> m b
k t
a t
tks)
happyFmap1 :: (t -> b) -> (t -> HappyIdentity t) -> t -> HappyIdentity b
happyFmap1 t -> b
f t -> HappyIdentity t
m t
tks = HappyIdentity t -> (t -> HappyIdentity b) -> HappyIdentity b
forall a b.
HappyIdentity a -> (a -> HappyIdentity b) -> HappyIdentity b
happyThen (t -> HappyIdentity t
m t
tks) (\t
a -> b -> HappyIdentity b
forall a. a -> HappyIdentity a
happyReturn (t -> b
f t
a))
happyReturn1 :: () => a -> b -> (HappyIdentity a)
happyReturn1 :: forall a b. a -> b -> HappyIdentity a
happyReturn1 = \a
a b
tks -> (forall (m :: * -> *) a. Monad m => a -> m a
Happy_Prelude.return) a
a
happyReport' :: () => [(T.Token)] -> [Happy_Prelude.String] -> ([(T.Token)] -> (HappyIdentity a)) -> (HappyIdentity a)
happyReport' :: forall a.
[Token]
-> [String] -> ([Token] -> HappyIdentity a) -> HappyIdentity a
happyReport' = (\[Token]
tokens [String]
expected [Token] -> HappyIdentity a
resume -> a -> HappyIdentity a
forall a. a -> HappyIdentity a
HappyIdentity (a -> HappyIdentity a) -> a -> HappyIdentity a
forall a b. (a -> b) -> a -> b
Happy_Prelude.$ (forall a. [Token] -> a
parseError) [Token]
tokens)

happyAbort :: () => [(T.Token)] -> (HappyIdentity a)
happyAbort :: forall a. [Token] -> HappyIdentity a
happyAbort = String -> [Token] -> HappyIdentity a
forall a. HasCallStack => String -> a
Happy_Prelude.error String
"Called abort handler in non-resumptive parser"

parse :: [Token] -> [Declaration]
parse [Token]
tks = HappyIdentity [Declaration] -> [Declaration]
forall {a}. HappyIdentity a -> a
happyRunIdentity HappyIdentity [Declaration]
happySomeParser where
 happySomeParser :: HappyIdentity [Declaration]
happySomeParser = HappyIdentity HappyAbsSyn
-> (HappyAbsSyn -> HappyIdentity [Declaration])
-> HappyIdentity [Declaration]
forall a b.
HappyIdentity a -> (a -> HappyIdentity b) -> HappyIdentity b
happyThen (Int# -> [Token] -> HappyIdentity HappyAbsSyn
happyParse Int#
0# [Token]
tks) (\HappyAbsSyn
x -> [Declaration] -> HappyIdentity [Declaration]
forall a. a -> HappyIdentity a
happyReturn (let {(HappyWrap5 [Declaration]
x') = HappyAbsSyn -> HappyWrap5
happyOut5 HappyAbsSyn
x} in [Declaration]
x'))

happySeq :: a -> b -> b
happySeq = a -> b -> b
forall a b. a -> b -> b
happyDontSeq


parseError :: [T.Token] -> a
parseError :: forall a. [Token] -> a
parseError [] = String -> a
forall a. HasCallStack => String -> a
error String
"Parse error at EOF"
parseError (Token
x : [Token]
xs) = String -> a
forall a. HasCallStack => String -> a
error (String
"Parse error at token " String -> String -> String
forall a. [a] -> [a] -> [a]
++ Token -> String
T.prettyTok Token
x)
#define HAPPY_COERCE 1
-- $Id: GenericTemplate.hs,v 1.26 2005/01/14 14:47:22 simonmar Exp $

#if !defined(__GLASGOW_HASKELL__)
#  error This code isn't being built with GHC.
#endif

-- Get WORDS_BIGENDIAN (if defined)
#include "MachDeps.h"

-- Do not remove this comment. Required to fix CPP parsing when using GCC and a clang-compiled alex.
#define LT(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.<# m)) :: Happy_Prelude.Bool)
#define GTE(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.>=# m)) :: Happy_Prelude.Bool)
#define EQ(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.==# m)) :: Happy_Prelude.Bool)
#define PLUS(n,m) (n Happy_GHC_Exts.+# m)
#define MINUS(n,m) (n Happy_GHC_Exts.-# m)
#define TIMES(n,m) (n Happy_GHC_Exts.*# m)
#define NEGATE(n) (Happy_GHC_Exts.negateInt# (n))

type Happy_Int = Happy_GHC_Exts.Int#
data Happy_IntList = HappyCons Happy_Int Happy_IntList

#define INVALID_TOK -1#
#define ERROR_TOK 0#
#define CATCH_TOK 1#

#if defined(HAPPY_COERCE)
#  define GET_ERROR_TOKEN(x)  (case Happy_GHC_Exts.unsafeCoerce# x of { (Happy_GHC_Exts.I# i) -> i })
#  define MK_ERROR_TOKEN(i)   (Happy_GHC_Exts.unsafeCoerce# (Happy_GHC_Exts.I# i))
#  define MK_TOKEN(x)         (happyInTok (x))
#else
#  define GET_ERROR_TOKEN(x)  (case x of { HappyErrorToken (Happy_GHC_Exts.I# i) -> i })
#  define MK_ERROR_TOKEN(i)   (HappyErrorToken (Happy_GHC_Exts.I# i))
#  define MK_TOKEN(x)         (HappyTerminal (x))
#endif

#if defined(HAPPY_DEBUG)
#  define DEBUG_TRACE(s)    (happyTrace (s)) Happy_Prelude.$
happyTrace string expr = Happy_System_IO_Unsafe.unsafePerformIO Happy_Prelude.$ do
    Happy_System_IO.hPutStr Happy_System_IO.stderr string
    Happy_Prelude.return expr
#else
#  define DEBUG_TRACE(s)    {- nothing -}
#endif

infixr 9 `HappyStk`
data HappyStk a = HappyStk a (HappyStk a)

-----------------------------------------------------------------------------
-- starting the parse

happyParse :: Int# -> [Token] -> HappyIdentity HappyAbsSyn
happyParse Int#
start_state = Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyNewToken Int#
start_state Happy_IntList
forall a. a
notHappyAtAll HappyStk HappyAbsSyn
forall a. a
notHappyAtAll

-----------------------------------------------------------------------------
-- Accepting the parse

-- If the current token is ERROR_TOK, it means we've just accepted a partial
-- parse (a %partial parser).  We must ignore the saved token on the top of
-- the stack in this case.
happyAccept :: Int# -> p -> Int# -> p -> HappyStk a -> b -> HappyIdentity a
happyAccept ERROR_TOK tk st sts (_ `HappyStk` ans `HappyStk` _) =
        happyReturn1 ans
happyAccept Int#
j p
tk Int#
st p
sts (HappyStk a
ans HappyStk a
_) =
        (Int#
-> ((b -> HappyIdentity a) -> b -> HappyIdentity a)
-> (b -> HappyIdentity a)
-> b
-> HappyIdentity a
forall a. Int# -> a -> a
happyTcHack Int#
j (Int# -> (b -> HappyIdentity a) -> b -> HappyIdentity a
forall a. Int# -> a -> a
happyTcHack Int#
st)) (a -> b -> HappyIdentity a
forall a b. a -> b -> HappyIdentity a
happyReturn1 a
ans)

-----------------------------------------------------------------------------
-- Arrays only: do the next action

happyDoAction :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyDoAction Int#
i Token
tk Int#
st =
  DEBUG_TRACE("state: " Happy_Prelude.++ Happy_Prelude.show (Happy_GHC_Exts.I# st) Happy_Prelude.++
              ",\ttoken: " Happy_Prelude.++ Happy_Prelude.show (Happy_GHC_Exts.I# i) Happy_Prelude.++
              ",\taction: ")
  case Int# -> HappyAction
happyDecodeAction (Int# -> Int# -> Int#
happyNextAction Int#
i Int#
st) of
    HappyAction
HappyFail             -> DEBUG_TRACE("failing.\n")
                             Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyFail Int#
i Token
tk Int#
st
    HappyAction
HappyAccept           -> DEBUG_TRACE("accept.\n")
                             Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
forall {p} {p} {a} {b}.
Int# -> p -> Int# -> p -> HappyStk a -> b -> HappyIdentity a
happyAccept Int#
i Token
tk Int#
st
    HappyReduce Int#
rule      -> DEBUG_TRACE("reduce (rule " Happy_Prelude.++ Happy_Prelude.show (Happy_GHC_Exts.I# rule) Happy_Prelude.++ ")")
                             (Array
  Int
  (Int#
   -> Token
   -> Int#
   -> Happy_IntList
   -> HappyStk HappyAbsSyn
   -> [Token]
   -> HappyIdentity HappyAbsSyn)
happyReduceArr Array
  Int
  (Int#
   -> Token
   -> Int#
   -> Happy_IntList
   -> HappyStk HappyAbsSyn
   -> [Token]
   -> HappyIdentity HappyAbsSyn)
-> Int
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
forall i e. Ix i => Array i e -> i -> e
Happy_Data_Array.! (Int# -> Int
Happy_GHC_Exts.I# Int#
rule)) Int#
i Token
tk Int#
st
    HappyShift  Int#
new_state -> DEBUG_TRACE("shift, enter state " Happy_Prelude.++ Happy_Prelude.show (Happy_GHC_Exts.I# new_state) Happy_Prelude.++ "\n")
                             Int#
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyShift Int#
new_state Int#
i Token
tk Int#
st

{-# INLINE happyNextAction #-}
happyNextAction :: Int# -> Int# -> Int#
happyNextAction Int#
i Int#
st = case Int# -> Int# -> Maybe Int
happyIndexActionTable Int#
i Int#
st of
  Happy_Prelude.Just (Happy_GHC_Exts.I# Int#
act) -> Int#
act
  Maybe Int
Happy_Prelude.Nothing                      -> HappyAddr -> Int# -> Int#
happyIndexOffAddr HappyAddr
happyDefActions Int#
st

{-# INLINE happyIndexActionTable #-}
happyIndexActionTable :: Int# -> Int# -> Maybe Int
happyIndexActionTable Int#
i Int#
st
  | GTE(i, 0#), GTE(off, 0#), EQ(happyIndexOffAddr happyCheck off, i)
  -- i >= 0:   Guard against INVALID_TOK (do the default action, which ultimately errors)
  -- off >= 0: Otherwise it's a default action
  -- equality check: Ensure that the entry in the compressed array is owned by st
  = Int -> Maybe Int
forall a. a -> Maybe a
Happy_Prelude.Just (Int# -> Int
Happy_GHC_Exts.I# (HappyAddr -> Int# -> Int#
happyIndexOffAddr HappyAddr
happyTable Int#
off))
  | Bool
Happy_Prelude.otherwise
  = Maybe Int
forall a. Maybe a
Happy_Prelude.Nothing
  where
    off :: Int#
off = PLUS(happyIndexOffAddr happyActOffsets st, i)

data HappyAction
  = HappyFail
  | HappyAccept
  | HappyReduce Happy_Int -- rule number
  | HappyShift Happy_Int  -- new state
  deriving Int -> HappyAction -> String -> String
[HappyAction] -> String -> String
HappyAction -> String
(Int -> HappyAction -> String -> String)
-> (HappyAction -> String)
-> ([HappyAction] -> String -> String)
-> Show HappyAction
forall a.
(Int -> a -> String -> String)
-> (a -> String) -> ([a] -> String -> String) -> Show a
$cshowsPrec :: Int -> HappyAction -> String -> String
showsPrec :: Int -> HappyAction -> String -> String
$cshow :: HappyAction -> String
show :: HappyAction -> String
$cshowList :: [HappyAction] -> String -> String
showList :: [HappyAction] -> String -> String
Happy_Prelude.Show

{-# INLINE happyDecodeAction #-}
happyDecodeAction :: Happy_Int -> HappyAction
happyDecodeAction :: Int# -> HappyAction
happyDecodeAction  Int#
0#                        = HappyAction
HappyFail
happyDecodeAction Int#
-1#                        = HappyAction
HappyAccept
happyDecodeAction Int#
action | LT(action, 0#)    = HappyReduce NEGATE(PLUS(action, 1#))
                         | Bool
Happy_Prelude.otherwise = Int# -> HappyAction
HappyShift MINUS(action, 1#)

{-# INLINE happyIndexGotoTable #-}
happyIndexGotoTable :: Int# -> Int# -> Int#
happyIndexGotoTable Int#
nt Int#
st = HappyAddr -> Int# -> Int#
happyIndexOffAddr HappyAddr
happyTable Int#
off
  where
    off :: Int#
off = PLUS(happyIndexOffAddr happyGotoOffsets st, nt)

{-# INLINE happyIndexOffAddr #-}
happyIndexOffAddr :: HappyAddr -> Happy_Int -> Happy_Int
happyIndexOffAddr :: HappyAddr -> Int# -> Int#
happyIndexOffAddr (HappyA# Addr#
arr) Int#
off =
#if __GLASGOW_HASKELL__ >= 901
  Int32# -> Int#
Happy_GHC_Exts.int32ToInt# -- qualified import because it doesn't exist on older GHC's
#endif
#ifdef WORDS_BIGENDIAN
  -- The CI of `alex` tests this code path
  (Happy_GHC_Exts.word32ToInt32# (Happy_GHC_Exts.wordToWord32# (Happy_GHC_Exts.byteSwap32# (Happy_GHC_Exts.word32ToWord# (Happy_GHC_Exts.int32ToWord32#
#endif
  (Addr# -> Int# -> Int32#
Happy_GHC_Exts.indexInt32OffAddr# Addr#
arr Int#
off)
#ifdef WORDS_BIGENDIAN
  )))))
#endif

happyIndexRuleArr :: Happy_Int -> (# Happy_Int, Happy_Int #)
happyIndexRuleArr :: Int# -> (# Int#, Int# #)
happyIndexRuleArr Int#
r = (# Int#
nt, Int#
len #)
  where
    !(Happy_GHC_Exts.I# Int#
n_starts) = Int
happy_n_starts
    offs :: Int#
offs = TIMES(MINUS(r,n_starts),2#)
    nt :: Int#
nt = HappyAddr -> Int# -> Int#
happyIndexOffAddr HappyAddr
happyRuleArr Int#
offs
    len :: Int#
len = HappyAddr -> Int# -> Int#
happyIndexOffAddr HappyAddr
happyRuleArr PLUS(offs,1#)

data HappyAddr = HappyA# Happy_GHC_Exts.Addr#

-----------------------------------------------------------------------------
-- Shifting a token

happyShift :: Int#
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyShift Int#
new_state ERROR_TOK tk st sts stk@(x `HappyStk` _) =
     -- See "Error Fixup" below
     let i = GET_ERROR_TOKEN(x) in
     DEBUG_TRACE("shifting the error token")
     happyDoAction i tk new_state (HappyCons st sts) stk

happyShift Int#
new_state Int#
i Token
tk Int#
st Happy_IntList
sts HappyStk HappyAbsSyn
stk =
     Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyNewToken Int#
new_state (Int# -> Happy_IntList -> Happy_IntList
HappyCons Int#
st Happy_IntList
sts) (MK_TOKEN(tk) `HappyStk` stk)

-- happyReduce is specialised for the common cases.

happySpecReduce_0 :: Int#
-> HappyAbsSyn
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_0 Int#
nt HappyAbsSyn
fn Int#
j Token
tk Int#
st Happy_IntList
sts HappyStk HappyAbsSyn
stk
     = HappyAbsSyn
-> ([Token] -> HappyIdentity HappyAbsSyn)
-> [Token]
-> HappyIdentity HappyAbsSyn
forall a b. a -> b -> b
happySeq HappyAbsSyn
fn (Int#
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyGoto Int#
nt Int#
j Token
tk Int#
st (Int# -> Happy_IntList -> Happy_IntList
HappyCons Int#
st Happy_IntList
sts) (HappyAbsSyn
fn HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
stk))

happySpecReduce_1 :: Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_1 Int#
nt HappyAbsSyn -> HappyAbsSyn
fn Int#
j Token
tk Int#
old_st sts :: Happy_IntList
sts@(HappyCons Int#
st Happy_IntList
_) (HappyAbsSyn
v1 `HappyStk` HappyStk HappyAbsSyn
stk')
     = let r :: HappyAbsSyn
r = HappyAbsSyn -> HappyAbsSyn
fn HappyAbsSyn
v1 in
       Int#
-> ([Token] -> HappyIdentity HappyAbsSyn)
-> [Token]
-> HappyIdentity HappyAbsSyn
forall a. Int# -> a -> a
happyTcHack Int#
old_st (HappyAbsSyn
-> ([Token] -> HappyIdentity HappyAbsSyn)
-> [Token]
-> HappyIdentity HappyAbsSyn
forall a b. a -> b -> b
happySeq HappyAbsSyn
r (Int#
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyGoto Int#
nt Int#
j Token
tk Int#
st Happy_IntList
sts (HappyAbsSyn
r HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
stk')))

happySpecReduce_2 :: Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_2 Int#
nt HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
fn Int#
j Token
tk Int#
old_st
  (HappyCons Int#
_ sts :: Happy_IntList
sts@(HappyCons Int#
st Happy_IntList
_))
  (HappyAbsSyn
v1 `HappyStk` HappyAbsSyn
v2 `HappyStk` HappyStk HappyAbsSyn
stk')
     = let r :: HappyAbsSyn
r = HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
fn HappyAbsSyn
v1 HappyAbsSyn
v2 in
       Int#
-> ([Token] -> HappyIdentity HappyAbsSyn)
-> [Token]
-> HappyIdentity HappyAbsSyn
forall a. Int# -> a -> a
happyTcHack Int#
old_st (HappyAbsSyn
-> ([Token] -> HappyIdentity HappyAbsSyn)
-> [Token]
-> HappyIdentity HappyAbsSyn
forall a b. a -> b -> b
happySeq HappyAbsSyn
r (Int#
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyGoto Int#
nt Int#
j Token
tk Int#
st Happy_IntList
sts (HappyAbsSyn
r HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
stk')))

happySpecReduce_3 :: Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happySpecReduce_3 Int#
nt HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
fn Int#
j Token
tk Int#
old_st
  (HappyCons Int#
_ (HappyCons Int#
_ sts :: Happy_IntList
sts@(HappyCons Int#
st Happy_IntList
_)))
  (HappyAbsSyn
v1 `HappyStk` HappyAbsSyn
v2 `HappyStk` HappyAbsSyn
v3 `HappyStk` HappyStk HappyAbsSyn
stk')
     = let r :: HappyAbsSyn
r = HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
fn HappyAbsSyn
v1 HappyAbsSyn
v2 HappyAbsSyn
v3 in
       Int#
-> ([Token] -> HappyIdentity HappyAbsSyn)
-> [Token]
-> HappyIdentity HappyAbsSyn
forall a. Int# -> a -> a
happyTcHack Int#
old_st (HappyAbsSyn
-> ([Token] -> HappyIdentity HappyAbsSyn)
-> [Token]
-> HappyIdentity HappyAbsSyn
forall a b. a -> b -> b
happySeq HappyAbsSyn
r (Int#
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyGoto Int#
nt Int#
j Token
tk Int#
st Happy_IntList
sts (HappyAbsSyn
r HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
stk')))

happyReduce :: Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyReduce Int#
k Int#
nt HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
fn Int#
j Token
tk Int#
st Happy_IntList
sts HappyStk HappyAbsSyn
stk
     = case Int# -> Happy_IntList -> Happy_IntList
happyDrop MINUS(k,(1# :: Happy_Int)) sts of
         sts1 :: Happy_IntList
sts1@(HappyCons Int#
st1 Happy_IntList
_) ->
                let r :: HappyStk HappyAbsSyn
r = HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
fn HappyStk HappyAbsSyn
stk in -- it doesn't hurt to always seq here...
                Int#
st Int#
-> ([Token] -> HappyIdentity HappyAbsSyn)
-> [Token]
-> HappyIdentity HappyAbsSyn
forall a. Int# -> a -> a
`happyTcHack` HappyStk HappyAbsSyn
-> ([Token] -> HappyIdentity HappyAbsSyn)
-> [Token]
-> HappyIdentity HappyAbsSyn
forall a b. a -> b -> b
happyDoSeq HappyStk HappyAbsSyn
r (Int#
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyGoto Int#
nt Int#
j Token
tk Int#
st1 Happy_IntList
sts1 HappyStk HappyAbsSyn
r)

happyMonadReduce :: Int#
-> Int#
-> (HappyStk HappyAbsSyn -> Token -> HappyIdentity HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyMonadReduce Int#
k Int#
nt HappyStk HappyAbsSyn -> Token -> HappyIdentity HappyAbsSyn
fn Int#
j Token
tk Int#
st Happy_IntList
sts HappyStk HappyAbsSyn
stk =
      case Int# -> Happy_IntList -> Happy_IntList
happyDrop Int#
k (Int# -> Happy_IntList -> Happy_IntList
HappyCons Int#
st Happy_IntList
sts) of
        sts1 :: Happy_IntList
sts1@(HappyCons Int#
st1 Happy_IntList
_) ->
          let drop_stk :: HappyStk HappyAbsSyn
drop_stk = Int# -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall {a}. Int# -> HappyStk a -> HappyStk a
happyDropStk Int#
k HappyStk HappyAbsSyn
stk in
          Int#
j Int#
-> ([Token] -> HappyIdentity HappyAbsSyn)
-> [Token]
-> HappyIdentity HappyAbsSyn
forall a. Int# -> a -> a
`happyTcHack` HappyIdentity HappyAbsSyn
-> (HappyAbsSyn -> [Token] -> HappyIdentity HappyAbsSyn)
-> [Token]
-> HappyIdentity HappyAbsSyn
forall {m :: * -> *} {t} {t} {b}.
Monad m =>
m t -> (t -> t -> m b) -> t -> m b
happyThen1 (HappyStk HappyAbsSyn -> Token -> HappyIdentity HappyAbsSyn
fn HappyStk HappyAbsSyn
stk Token
tk)
                                     (\HappyAbsSyn
r -> Int#
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyGoto Int#
nt Int#
j Token
tk Int#
st1 Happy_IntList
sts1 (HappyAbsSyn
r HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
drop_stk))

happyMonad2Reduce :: Int#
-> Int#
-> (HappyStk HappyAbsSyn -> t -> HappyIdentity HappyAbsSyn)
-> Int#
-> t
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyMonad2Reduce Int#
k Int#
nt HappyStk HappyAbsSyn -> t -> HappyIdentity HappyAbsSyn
fn Int#
j t
tk Int#
st Happy_IntList
sts HappyStk HappyAbsSyn
stk =
      case Int# -> Happy_IntList -> Happy_IntList
happyDrop Int#
k (Int# -> Happy_IntList -> Happy_IntList
HappyCons Int#
st Happy_IntList
sts) of
        sts1 :: Happy_IntList
sts1@(HappyCons Int#
st1 Happy_IntList
_) ->
          let drop_stk :: HappyStk HappyAbsSyn
drop_stk = Int# -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall {a}. Int# -> HappyStk a -> HappyStk a
happyDropStk Int#
k HappyStk HappyAbsSyn
stk
              off :: Int#
off = HappyAddr -> Int# -> Int#
happyIndexOffAddr HappyAddr
happyGotoOffsets Int#
st1
              off_i :: Int#
off_i = PLUS(off, nt)
              new_state :: Int#
new_state = HappyAddr -> Int# -> Int#
happyIndexOffAddr HappyAddr
happyTable Int#
off_i
          in
            Int#
j Int#
-> ([Token] -> HappyIdentity HappyAbsSyn)
-> [Token]
-> HappyIdentity HappyAbsSyn
forall a. Int# -> a -> a
`happyTcHack` HappyIdentity HappyAbsSyn
-> (HappyAbsSyn -> [Token] -> HappyIdentity HappyAbsSyn)
-> [Token]
-> HappyIdentity HappyAbsSyn
forall {m :: * -> *} {t} {t} {b}.
Monad m =>
m t -> (t -> t -> m b) -> t -> m b
happyThen1 (HappyStk HappyAbsSyn -> t -> HappyIdentity HappyAbsSyn
fn HappyStk HappyAbsSyn
stk t
tk)
                                       (\HappyAbsSyn
r -> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyNewToken Int#
new_state Happy_IntList
sts1 (HappyAbsSyn
r HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
drop_stk))

happyDrop :: Int# -> Happy_IntList -> Happy_IntList
happyDrop Int#
0# Happy_IntList
l               = Happy_IntList
l
happyDrop Int#
n  (HappyCons Int#
_ Happy_IntList
t) = Int# -> Happy_IntList -> Happy_IntList
happyDrop MINUS(n,(1# :: Happy_Int)) t

happyDropStk :: Int# -> HappyStk a -> HappyStk a
happyDropStk Int#
0# HappyStk a
l                 = HappyStk a
l
happyDropStk Int#
n  (a
x `HappyStk` HappyStk a
xs) = Int# -> HappyStk a -> HappyStk a
happyDropStk MINUS(n,(1#::Happy_Int)) xs

-----------------------------------------------------------------------------
-- Moving to a new state after a reduction

happyGoto :: Int#
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyGoto Int#
nt Int#
j Token
tk Int#
st =
   DEBUG_TRACE(", goto state " Happy_Prelude.++ Happy_Prelude.show (Happy_GHC_Exts.I# new_state) Happy_Prelude.++ "\n")
   Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyDoAction Int#
j Token
tk Int#
new_state
  where new_state :: Int#
new_state = Int# -> Int# -> Int#
happyIndexGotoTable Int#
nt Int#
st

{- Note [Error recovery]
~~~~~~~~~~~~~~~~~~~~~~~~
When there is no applicable action for the current lookahead token `tk`,
happy enters error recovery mode. Depending on whether the grammar file
declares the two action form `%error { abort } { report }` for
    Resumptive Error Handling,
it works in one (not resumptive) or two phases (resumptive):

 1. Fixup mode:
    Try to see if there is an action for the error token ERROR_TOK. If there
    is, do *not* emit an error and pretend instead that an `error` token was
    inserted.
    When there is no ERROR_TOK action, report an error.

    In non-resumptive error handling, calling the single error handler
    (e.g. `happyError`) will throw an exception and abort the parser.
    However, in resumptive error handling we enter *error resumption mode*.

 2. Error resumption mode:
    After reporting the error (with `report`), happy will attempt to find
    a good state stack to resume parsing in.
    For each candidate stack, it discards input until one of the candidates
    resumes (i.e. shifts the current input).
    If no candidate resumes before the end of input, resumption failed and
    calls the `abort` function, to much the same effect as in non-resumptive
    error handling.

    Candidate stacks are declared by the grammar author using the special
    `catch` terminal and called "catch frames".
    This mechanism is described in detail in Note [happyResume].

The `catch` resumption mechanism (2) is what usually is associated with
`error` in `bison` or `menhir`. Since `error` is used for the Fixup mechanism
(1) above, we call the corresponding token `catch`.
Furthermore, in constrast to `bison`, our implementation of `catch`
non-deterministically considers multiple catch frames on the stack for
resumption (See Note [Multiple catch frames]).

Note [happyResume]
~~~~~~~~~~~~~~~~~~
`happyResume` implements the resumption mechanism from Note [Error recovery].
It is best understood by example. Consider

Exp :: { String }
Exp : '1'                { "1" }
    | catch              { "catch" }
    | Exp '+' Exp %shift { $1 Happy_Prelude.++ " + " Happy_Prelude.++ $3 } -- %shift: associate 1 + 1 + 1 to the right
    | '(' Exp ')'        { "(" Happy_Prelude.++ $2 Happy_Prelude.++ ")" }

The idea of the use of `catch` here is that upon encountering a parse error
during expression parsing, we can gracefully degrade using the `catch` rule,
still producing a partial syntax tree and keep on parsing to find further
syntax errors.

Let's trace the parser state for input 11+1, which will error out after shifting 1.
After shifting, we have the following item stack (growing downwards and omitting
transitive closure items):

  State 0: %start_parseExp -> . Exp
  State 5: Exp -> '1' .

(Stack as a list of state numbers: [5,0].)
As Note [Error recovery] describes, we will first try Fixup mode.
That fails because no production can shift the `error` token.
Next we try Error resumption mode. This works as follows:

  1. Pop off the item stack until we find an item that can shift the `catch`
     token. (Implemented in `pop_items`.)
       * State 5 cannot shift catch. Pop.
       * State 0 can shift catch, which would transition into
          State 4: Exp -> catch .
     So record the *stack* `[4,0]` after doing the shift transition.
     We call this a *catch frame*, where the top is a *catch state*,
     corresponding to an item in which we just shifted a `catch` token.
     There can be multiple such catch stacks, see Note [Multiple catch frames].

  2. Discard tokens from the input until the lookahead can be shifted in one
     of the catch stacks. (Implemented in `discard_input_until_exp` and
     `some_catch_state_shifts`.)
       * We cannot shift the current lookahead '1' in state 4, so we discard
       * We *can* shift the next lookahead '+' in state 4, but only after
         reducing, which pops State 4 and goes to State 3:
           State 3: %start_parseExp -> Exp .
                    Exp -> Exp . '+' Exp
         Here we can shift '+'.
     As you can see, to implement this machinery we need to simulate
     the operation of the LALR automaton, especially reduction
     (`happySimulateReduce`).

Note [Multiple catch frames]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
For fewer spurious error messages, it can be beneficial to trace multiple catch
items. Consider

Exp : '1'
    | catch
    | Exp '+' Exp %shift
    | '(' Exp ')'

Let's trace the parser state for input (;+1, which will error out after shifting (.
After shifting, we have the following item stack (growing downwards):

  State 0: %start_parseExp -> . Exp
  State 6: Exp -> '(' . Exp ')'

Upon error, we want to find items in the stack which can shift a catch token.
Note that both State 0 and State 6 can shift a catch token, transitioning into
  State 4: Exp -> catch .
Hence we record the catch frames `[4,6,0]` and `[4,0]` for possible resumption.

Which catch frame do we pick for resumption?
Note that resuming catch frame `[4,0]` will parse as "catch+1", whereas
resuming the innermost frame `[4,6,0]` corresponds to parsing "(catch+1".
The latter would keep discarding input until the closing ')' is found.
So we will discard + and 1, leading to a spurious syntax error at the end of
input, aborting the parse and never producing a partial syntax tree. Bad!

It is far preferable to resume with catch frame `[4,0]`, where we can resume
successfully on input +, so that is what we do.

In general, we pick the catch frame for resumption that discards the least
amount of input for a successful shift, preferring the topmost such catch frame.
-}

-- happyFail :: Happy_Int -> Token -> Happy_Int -> _
-- This function triggers Note [Error recovery].
-- If the current token is ERROR_TOK, phase (1) has failed and we might try
-- phase (2).
happyFail :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyFail ERROR_TOK = happyFixupFailed
happyFail Int#
i         = Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyTryFixup Int#
i

-- Enter Error Fixup (see Note [Error recovery]):
-- generate an error token, save the old token and carry on.
-- When a `happyShift` accepts the error token, we will pop off the error token
-- to resume parsing with the current lookahead `i`.
happyTryFixup :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyTryFixup Int#
i Token
tk Int#
action Happy_IntList
sts HappyStk HappyAbsSyn
stk =
  DEBUG_TRACE("entering `error` fixup.\n")
  Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyDoAction ERROR_TOK tk action sts (MK_ERROR_TOKEN(i) `HappyStk` stk)
  -- NB: `happyShift` will simply pop the error token and carry on with
  --     `tk`. Hence we don't change `tk` in the call here

-- See Note [Error recovery], phase (2).
-- Enter resumption mode after reporting the error by calling `happyResume`.
happyFixupFailed :: Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyFixupFailed Token
tk Int#
st Happy_IntList
sts (HappyAbsSyn
x `HappyStk` HappyStk HappyAbsSyn
stk) =
  let i :: Int#
i = GET_ERROR_TOKEN(x) in
  DEBUG_TRACE("`error` fixup failed.\n")
  let resume :: [Token] -> HappyIdentity HappyAbsSyn
resume   = Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyResume Int#
i Token
tk Int#
st Happy_IntList
sts HappyStk HappyAbsSyn
stk
      expected :: [String]
expected = Int# -> Happy_IntList -> [String]
happyExpectedTokens Int#
st Happy_IntList
sts in
  Int#
-> Token
-> [String]
-> ([Token] -> HappyIdentity HappyAbsSyn)
-> [Token]
-> HappyIdentity HappyAbsSyn
forall {a}.
Int#
-> Token
-> [String]
-> ([Token] -> HappyIdentity a)
-> [Token]
-> HappyIdentity a
happyReport Int#
i Token
tk [String]
expected [Token] -> HappyIdentity HappyAbsSyn
resume

-- happyResume :: Happy_Int -> Token -> Happy_Int -> _
-- See Note [happyResume]
happyResume :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyResume Int#
i Token
tk Int#
st Happy_IntList
sts HappyStk HappyAbsSyn
stk = [(Happy_IntList, HappyStk HappyAbsSyn)]
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
pop_items [] Int#
st Happy_IntList
sts HappyStk HappyAbsSyn
stk
  where
    !(Happy_GHC_Exts.I# Int#
n_starts) = Int
happy_n_starts   -- this is to test whether we have a start token
    !(Happy_GHC_Exts.I# Int#
eof_i) = Int
happy_n_terms Int -> Int -> Int
forall a. Num a => a -> a -> a
Happy_Prelude.- Int
1   -- this is the token number of the EOF token
    happy_list_to_list :: Happy_IntList -> [Happy_Prelude.Int]
    happy_list_to_list :: Happy_IntList -> [Int]
happy_list_to_list (HappyCons Int#
st Happy_IntList
sts)
      | LT(st, n_starts)
      = [(Int# -> Int
Happy_GHC_Exts.I# Int#
st)]
      | Bool
Happy_Prelude.otherwise
      = (Int# -> Int
Happy_GHC_Exts.I# Int#
st) Int -> [Int] -> [Int]
forall a. a -> [a] -> [a]
: Happy_IntList -> [Int]
happy_list_to_list Happy_IntList
sts

    -- See (1) of Note [happyResume]
    pop_items :: [(Happy_IntList, HappyStk HappyAbsSyn)]
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
pop_items [(Happy_IntList, HappyStk HappyAbsSyn)]
catch_frames Int#
st Happy_IntList
sts HappyStk HappyAbsSyn
stk
      | LT(st, n_starts)
      = DEBUG_TRACE("reached start state " Happy_Prelude.++ Happy_Prelude.show (Happy_GHC_Exts.I# st) Happy_Prelude.++ ", ")
        if [(Happy_IntList, HappyStk HappyAbsSyn)] -> Bool
forall a. [a] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
Happy_Prelude.null [(Happy_IntList, HappyStk HappyAbsSyn)]
catch_frames_new
          then DEBUG_TRACE("no resumption.\n")
               [Token] -> HappyIdentity HappyAbsSyn
forall a. [Token] -> HappyIdentity a
happyAbort
          else DEBUG_TRACE("now discard input, trying to anchor in states " Happy_Prelude.++ Happy_Prelude.show (Happy_Prelude.map (happy_list_to_list . Happy_Prelude.fst) (Happy_Prelude.reverse catch_frames_new)) Happy_Prelude.++ ".\n")
               Int#
-> Token
-> [(Happy_IntList, HappyStk HappyAbsSyn)]
-> [Token]
-> HappyIdentity HappyAbsSyn
discard_input_until_exp Int#
i Token
tk ([(Happy_IntList, HappyStk HappyAbsSyn)]
-> [(Happy_IntList, HappyStk HappyAbsSyn)]
forall a. [a] -> [a]
Happy_Prelude.reverse [(Happy_IntList, HappyStk HappyAbsSyn)]
catch_frames_new)
      | (HappyCons Int#
st1 Happy_IntList
sts1) <- Happy_IntList
sts, HappyAbsSyn
_ `HappyStk` HappyStk HappyAbsSyn
stk1 <- HappyStk HappyAbsSyn
stk
      = [(Happy_IntList, HappyStk HappyAbsSyn)]
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
pop_items [(Happy_IntList, HappyStk HappyAbsSyn)]
catch_frames_new Int#
st1 Happy_IntList
sts1 HappyStk HappyAbsSyn
stk1
      where
        !catch_frames_new :: [(Happy_IntList, HappyStk HappyAbsSyn)]
catch_frames_new
          | HappyShift Int#
new_state <- Int# -> HappyAction
happyDecodeAction (Int# -> Int# -> Int#
happyNextAction CATCH_TOK st)
          , DEBUG_TRACE("can shift catch token in state " Happy_Prelude.++ Happy_Prelude.show (Happy_GHC_Exts.I# st) Happy_Prelude.++ ", into state " Happy_Prelude.++ Happy_Prelude.show (Happy_GHC_Exts.I# new_state) Happy_Prelude.++ "\n")
            [(Happy_IntList, HappyStk HappyAbsSyn)] -> Bool
forall a. [a] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
Happy_Prelude.null (((Happy_IntList, HappyStk HappyAbsSyn) -> Bool)
-> [(Happy_IntList, HappyStk HappyAbsSyn)]
-> [(Happy_IntList, HappyStk HappyAbsSyn)]
forall a. (a -> Bool) -> [a] -> [a]
Happy_Prelude.filter (\(HappyCons Int#
_ (HappyCons Int#
h Happy_IntList
_),HappyStk HappyAbsSyn
_) -> EQ(st,h)) catch_frames)
          = (Int# -> Happy_IntList -> Happy_IntList
HappyCons Int#
new_state (Int# -> Happy_IntList -> Happy_IntList
HappyCons Int#
st Happy_IntList
sts), MK_ERROR_TOKEN(i) `HappyStk` stk):catch_frames -- MK_ERROR_TOKEN(i) is just some dummy that should not be accessed by user code
          | Bool
Happy_Prelude.otherwise
          = DEBUG_TRACE("already shifted or can't shift catch in " Happy_Prelude.++ Happy_Prelude.show (Happy_GHC_Exts.I# st) Happy_Prelude.++ "\n")
            [(Happy_IntList, HappyStk HappyAbsSyn)]
catch_frames

    -- See (2) of Note [happyResume]
    discard_input_until_exp :: Int#
-> Token
-> [(Happy_IntList, HappyStk HappyAbsSyn)]
-> [Token]
-> HappyIdentity HappyAbsSyn
discard_input_until_exp Int#
i Token
tk [(Happy_IntList, HappyStk HappyAbsSyn)]
catch_frames
      | Happy_Prelude.Just (HappyCons Int#
st (HappyCons Int#
catch_st Happy_IntList
sts), HappyStk HappyAbsSyn
catch_frame) <- Int#
-> [(Happy_IntList, HappyStk HappyAbsSyn)]
-> Maybe (Happy_IntList, HappyStk HappyAbsSyn)
forall {b}.
Int# -> [(Happy_IntList, b)] -> Maybe (Happy_IntList, b)
some_catch_state_shifts Int#
i [(Happy_IntList, HappyStk HappyAbsSyn)]
catch_frames
      = DEBUG_TRACE("found expected token in state " Happy_Prelude.++ Happy_Prelude.show (Happy_GHC_Exts.I# st) Happy_Prelude.++ " after shifting from " Happy_Prelude.++ Happy_Prelude.show (Happy_GHC_Exts.I# catch_st) Happy_Prelude.++ ": " Happy_Prelude.++ Happy_Prelude.show (Happy_GHC_Exts.I# i) Happy_Prelude.++ "\n")
        Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> [Token]
-> HappyIdentity HappyAbsSyn
happyDoAction Int#
i Token
tk Int#
st (Int# -> Happy_IntList -> Happy_IntList
HappyCons Int#
catch_st Happy_IntList
sts) HappyStk HappyAbsSyn
catch_frame
      | EQ(i,eof_i) -- is i EOF?
      = DEBUG_TRACE("reached EOF, cannot resume. abort parse :(\n")
        [Token] -> HappyIdentity HappyAbsSyn
forall a. [Token] -> HappyIdentity a
happyAbort
      | Bool
Happy_Prelude.otherwise
      = DEBUG_TRACE("discard token " Happy_Prelude.++ Happy_Prelude.show (Happy_GHC_Exts.I# i) Happy_Prelude.++ "\n")
        (Token -> [Token] -> HappyIdentity HappyAbsSyn)
-> (Int# -> Token -> [Token] -> HappyIdentity HappyAbsSyn)
-> [Token]
-> HappyIdentity HappyAbsSyn
forall {t} {a} {t}.
(t -> [a] -> t) -> (Int# -> Token -> [Token] -> t) -> [Token] -> t
happyLex (\Token
eof_tk -> Int#
-> Token
-> [(Happy_IntList, HappyStk HappyAbsSyn)]
-> [Token]
-> HappyIdentity HappyAbsSyn
discard_input_until_exp Int#
eof_i Token
eof_tk [(Happy_IntList, HappyStk HappyAbsSyn)]
catch_frames) -- eof
                 (\Int#
i Token
tk   -> Int#
-> Token
-> [(Happy_IntList, HappyStk HappyAbsSyn)]
-> [Token]
-> HappyIdentity HappyAbsSyn
discard_input_until_exp Int#
i Token
tk [(Happy_IntList, HappyStk HappyAbsSyn)]
catch_frames)         -- not eof

    some_catch_state_shifts :: Int# -> [(Happy_IntList, b)] -> Maybe (Happy_IntList, b)
some_catch_state_shifts Int#
_ [] = DEBUG_TRACE("no catch state could shift.\n") Happy_Prelude.Nothing
    some_catch_state_shifts Int#
i catch_frames :: [(Happy_IntList, b)]
catch_frames@(((HappyCons Int#
st Happy_IntList
sts),b
_):[(Happy_IntList, b)]
_) = Int#
-> Int#
-> Happy_IntList
-> [(Happy_IntList, b)]
-> Maybe (Happy_IntList, b)
try_head Int#
i Int#
st Happy_IntList
sts [(Happy_IntList, b)]
catch_frames
      where
        try_head :: Int#
-> Int#
-> Happy_IntList
-> [(Happy_IntList, b)]
-> Maybe (Happy_IntList, b)
try_head Int#
i Int#
st Happy_IntList
sts [(Happy_IntList, b)]
catch_frames = -- PRECONDITION: head catch_frames = (HappyCons st sts)
          DEBUG_TRACE("trying token " Happy_Prelude.++ Happy_Prelude.show (Happy_GHC_Exts.I# i) Happy_Prelude.++ " in state " Happy_Prelude.++ Happy_Prelude.show (Happy_GHC_Exts.I# st) Happy_Prelude.++ ": ")
          case Int# -> HappyAction
happyDecodeAction (Int# -> Int# -> Int#
happyNextAction Int#
i Int#
st) of
            HappyAction
HappyFail     -> DEBUG_TRACE("fail.\n")   some_catch_state_shifts i (Happy_Prelude.tail catch_frames)
            HappyAction
HappyAccept   -> DEBUG_TRACE("accept.\n") Happy_Prelude.Just (Happy_Prelude.head catch_frames)
            HappyShift Int#
_  -> DEBUG_TRACE("shift.\n")  Happy_Prelude.Just (Happy_Prelude.head catch_frames)
            HappyReduce Int#
r -> case Int# -> Int# -> Happy_IntList -> Happy_IntList
happySimulateReduce Int#
r Int#
st Happy_IntList
sts of
              (HappyCons Int#
st1 Happy_IntList
sts1) -> Int#
-> Int#
-> Happy_IntList
-> [(Happy_IntList, b)]
-> Maybe (Happy_IntList, b)
try_head Int#
i Int#
st1 Happy_IntList
sts1 [(Happy_IntList, b)]
catch_frames

happySimulateReduce :: Int# -> Int# -> Happy_IntList -> Happy_IntList
happySimulateReduce Int#
r Int#
st Happy_IntList
sts =
  DEBUG_TRACE("simulate reduction of rule " Happy_Prelude.++ Happy_Prelude.show (Happy_GHC_Exts.I# r) Happy_Prelude.++ ", ")
  let (# Int#
nt, Int#
len #) = Int# -> (# Int#, Int# #)
happyIndexRuleArr Int#
r in
  DEBUG_TRACE("nt " Happy_Prelude.++ Happy_Prelude.show (Happy_GHC_Exts.I# nt) Happy_Prelude.++ ", len: " Happy_Prelude.++ Happy_Prelude.show (Happy_GHC_Exts.I# len) Happy_Prelude.++ ", new_st ")
  let !(sts1 :: Happy_IntList
sts1@(HappyCons Int#
st1 Happy_IntList
_)) = Int# -> Happy_IntList -> Happy_IntList
happyDrop Int#
len (Int# -> Happy_IntList -> Happy_IntList
HappyCons Int#
st Happy_IntList
sts)
      new_st :: Int#
new_st = Int# -> Int# -> Int#
happyIndexGotoTable Int#
nt Int#
st1 in
  DEBUG_TRACE(Happy_Prelude.show (Happy_GHC_Exts.I# new_st) Happy_Prelude.++ ".\n")
  (Int# -> Happy_IntList -> Happy_IntList
HappyCons Int#
new_st Happy_IntList
sts1)

happyTokenToString :: Happy_Prelude.Int -> Happy_Prelude.String
happyTokenToString :: Int -> String
happyTokenToString Int
i = [String]
happyTokenStrings [String] -> Int -> String
forall a. HasCallStack => [a] -> Int -> a
Happy_Prelude.!! (Int
i Int -> Int -> Int
forall a. Num a => a -> a -> a
Happy_Prelude.- Int
2) -- 2: errorTok, catchTok

happyExpectedTokens :: Happy_Int -> Happy_IntList -> [Happy_Prelude.String]
-- Upon a parse error, we want to suggest tokens that are expected in that
-- situation. This function computes such tokens.
-- It works by examining the top of the state stack.
-- For every token number that does a shift transition, record that token number.
-- For every token number that does a reduce transition, simulate that reduction
-- on the state state stack and repeat.
-- The recorded token numbers are then formatted with 'happyTokenToString' and
-- returned.
happyExpectedTokens :: Int# -> Happy_IntList -> [String]
happyExpectedTokens Int#
st Happy_IntList
sts =
  DEBUG_TRACE("constructing expected tokens.\n")
  (Int -> String) -> [Int] -> [String]
forall a b. (a -> b) -> [a] -> [b]
Happy_Prelude.map Int -> String
happyTokenToString (Int# -> Happy_IntList -> [Int] -> [Int]
search_shifts Int#
st Happy_IntList
sts [])
  where
    search_shifts :: Int# -> Happy_IntList -> [Int] -> [Int]
search_shifts Int#
st Happy_IntList
sts [Int]
shifts = ((Int, Int) -> [Int] -> [Int]) -> [Int] -> [(Int, Int)] -> [Int]
forall a b. (a -> b -> b) -> b -> [a] -> b
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
Happy_Prelude.foldr (Int# -> Happy_IntList -> (Int, Int) -> [Int] -> [Int]
add_action Int#
st Happy_IntList
sts) [Int]
shifts (Int# -> [(Int, Int)]
distinct_actions Int#
st)
    add_action :: Int# -> Happy_IntList -> (Int, Int) -> [Int] -> [Int]
add_action Int#
st Happy_IntList
sts (Happy_GHC_Exts.I# Int#
i, Happy_GHC_Exts.I# Int#
act) [Int]
shifts =
      DEBUG_TRACE("found action in state " Happy_Prelude.++ Happy_Prelude.show (Happy_GHC_Exts.I# st) Happy_Prelude.++ ", input " Happy_Prelude.++ Happy_Prelude.show (Happy_GHC_Exts.I# i) Happy_Prelude.++ ", " Happy_Prelude.++ Happy_Prelude.show (happyDecodeAction act) Happy_Prelude.++ "\n")
      case Int# -> HappyAction
happyDecodeAction Int#
act of
        HappyAction
HappyFail     -> [Int]
shifts
        HappyAction
HappyAccept   -> [Int]
shifts -- This would always be %eof or error... Not helpful
        HappyShift Int#
_  -> Int -> [Int] -> [Int]
forall a. Ord a => a -> [a] -> [a]
Happy_Prelude.insert (Int# -> Int
Happy_GHC_Exts.I# Int#
i) [Int]
shifts
        HappyReduce Int#
r -> case Int# -> Int# -> Happy_IntList -> Happy_IntList
happySimulateReduce Int#
r Int#
st Happy_IntList
sts of
          (HappyCons Int#
st1 Happy_IntList
sts1) -> Int# -> Happy_IntList -> [Int] -> [Int]
search_shifts Int#
st1 Happy_IntList
sts1 [Int]
shifts
    distinct_actions :: Int# -> [(Int, Int)]
distinct_actions Int#
st
      -- The (token number, action) pairs of all actions in the given state
      = ((-Int
1), (Int# -> Int
Happy_GHC_Exts.I# (HappyAddr -> Int# -> Int#
happyIndexOffAddr HappyAddr
happyDefActions Int#
st)))
      (Int, Int) -> [(Int, Int)] -> [(Int, Int)]
forall a. a -> [a] -> [a]
: [ (Int
i, Int
act) | Int
i <- [Int
forall {a}. Num a => a
begin_i..Int
happy_n_terms], Int
act <- Int# -> Int -> [Int]
get_act Int#
row_off Int
i ]
      where
        row_off :: Int#
row_off = HappyAddr -> Int# -> Int#
happyIndexOffAddr HappyAddr
happyActOffsets Int#
st
        begin_i :: a
begin_i = a
2 -- +2: errorTok,catchTok
    get_act :: Int# -> Int -> [Int]
get_act Int#
off (Happy_GHC_Exts.I# Int#
i) -- happyIndexActionTable with cached row offset
      | let off_i :: Int#
off_i = PLUS(off,i)
      , GTE(off_i,0#)
      , EQ(happyIndexOffAddr happyCheck off_i,i)
      = [(Int# -> Int
Happy_GHC_Exts.I# (HappyAddr -> Int# -> Int#
happyIndexOffAddr HappyAddr
happyTable Int#
off_i))]
      | Bool
Happy_Prelude.otherwise
      = []

-- Internal happy errors:

notHappyAtAll :: a
notHappyAtAll :: forall a. a
notHappyAtAll = String -> a
forall a. HasCallStack => String -> a
Happy_Prelude.error String
"Internal Happy parser panic. This is not supposed to happen! Please open a bug report at https://github.com/haskell/happy/issues.\n"

-----------------------------------------------------------------------------
-- Hack to get the typechecker to accept our action functions

happyTcHack :: Happy_Int -> a -> a
happyTcHack :: forall a. Int# -> a -> a
happyTcHack Int#
x a
y = a
y
{-# INLINE happyTcHack #-}

-----------------------------------------------------------------------------
-- Seq-ing.  If the --strict flag is given, then Happy emits
--      happySeq = happyDoSeq
-- otherwise it emits
--      happySeq = happyDontSeq

happyDoSeq, happyDontSeq :: a -> b -> b
happyDoSeq :: forall a b. a -> b -> b
happyDoSeq   a
a b
b = a
a a -> b -> b
forall a b. a -> b -> b
`Happy_GHC_Exts.seq` b
b
happyDontSeq :: forall a b. a -> b -> b
happyDontSeq a
a b
b = b
b

-----------------------------------------------------------------------------
-- Don't inline any functions from the template.  GHC has a nasty habit
-- of deciding to inline happyGoto everywhere, which increases the size of
-- the generated parser quite a bit.

{-# NOINLINE happyDoAction #-}
{-# NOINLINE happyTable #-}
{-# NOINLINE happyCheck #-}
{-# NOINLINE happyActOffsets #-}
{-# NOINLINE happyGotoOffsets #-}
{-# NOINLINE happyDefActions #-}

{-# NOINLINE happyShift #-}
{-# NOINLINE happySpecReduce_0 #-}
{-# NOINLINE happySpecReduce_1 #-}
{-# NOINLINE happySpecReduce_2 #-}
{-# NOINLINE happySpecReduce_3 #-}
{-# NOINLINE happyReduce #-}
{-# NOINLINE happyMonadReduce #-}
{-# NOINLINE happyGoto #-}
{-# NOINLINE happyFail #-}

-- end of Happy Template.