module Prelude ( module PreludeList, module PreludeText, module PreludeIO, Bool(False, True), Maybe(Nothing, Just), Either(Left, Right), Ordering(LT, EQ, GT), Char, String, Int, Integer, Float, Double, Rational, IO, -- These built-in types are defined in the Prelude, but -- are denoted by built-in syntax, and cannot legally -- appear in an export list. -- List type: []((:), []) -- Tuple types: (,)((,)), (,,)((,,)), etc. -- Trivial type: ()(()) -- Functions: (->) Eq((==), (/=)), Ord(compare, (<), (<=), (>=), (>), max, min), Enum(succ, pred, toEnum, fromEnum, enumFrom, enumFromThen, enumFromTo, enumFromThenTo), Bounded(minBound, maxBound), Num((+), (-), (*), negate, abs, signum, fromInteger), Real(toRational), Integral(quot, rem, div, mod, quotRem, divMod, toInteger), Fractional((/), recip, fromRational), Floating(pi, exp, log, sqrt, (**), logBase, sin, cos, tan, asin, acos, atan, sinh, cosh, tanh, asinh, acosh, atanh), RealFrac(properFraction, truncate, round, ceiling, floor), RealFloat(floatRadix, floatDigits, floatRange, decodeFloat, encodeFloat, exponent, significand, scaleFloat, isNaN, isInfinite, isDenormalized, isIEEE, isNegativeZero, atan2), Monad((>>=), (>>), return, fail), Functor(fmap), mapM, mapM_, sequence, sequence_, (=<<), maybe, either, (&&), (||), not, otherwise, subtract, even, odd, gcd, lcm, (^), (^^), fromIntegral, realToFrac, fst, snd, curry, uncurry, id, const, (.), flip, ($), until, asTypeOf, error, undefined, seq, ($!) ) where import Prelude () {- import PreludeBuiltin -- Contains all `prim' values import UnicodePrims( primUnicodeMaxChar ) -- Unicode primitives import PreludeList -} import PreludeText import PreludeIO {- import Data.Ratio( Rational ) -} infixr 9 . infixr 8 ^, ^^, ** infixl 7 *, /, `quot`, `rem`, `div`, `mod` infixl 6 +, - -- The (:) operator is built-in syntax, and cannot legally be given -- a fixity declaration; but its fixity is given by: -- infixr 5 : infix 4 ==, /=, <, <=, >=, > infixr 3 && infixr 2 || infixl 1 >>, >>= infixr 1 =<< infixr 0 $, $!, `seq` -- Standard types, classes, instances and related functions -- Equality and Ordered classes class Eq a where (==), (/=) :: a -> a -> Bool -- Minimal complete definition: -- (==) or (/=) x /= y = not (x == y) x == y = not (x /= y) class (Eq a) => Ord a where compare :: a -> a -> Ordering (<), (<=), (>=), (>) :: a -> a -> Bool max, min :: a -> a -> a -- Minimal complete definition: -- (<=) or compare -- Using compare can be more efficient for complex types. compare x y | x == y = EQ | x <= y = LT | otherwise = GT x <= y = compare x y /= GT x < y = compare x y == LT x >= y = compare x y /= LT x > y = compare x y == GT -- note that (min x y, max x y) = (x,y) or (y,x) max x y | x <= y = y | otherwise = x min x y | x <= y = x | otherwise = y -- Enumeration and Bounded classes class Enum a where succ, pred :: a -> a toEnum :: Int -> a fromEnum :: a -> Int enumFrom :: a -> [a] -- [n..] enumFromThen :: a -> a -> [a] -- [n,n'..] enumFromTo :: a -> a -> [a] -- [n..m] enumFromThenTo :: a -> a -> a -> [a] -- [n,n'..m] -- Minimal complete definition: -- toEnum, fromEnum -- -- NOTE: these default methods only make sense for types -- that map injectively into Int using fromEnum -- and toEnum. succ = toEnum . (+1) . fromEnum pred = toEnum . (subtract 1) . fromEnum enumFrom x = map toEnum [fromEnum x ..] enumFromTo x y = map toEnum [fromEnum x .. fromEnum y] enumFromThen x y = map toEnum [fromEnum x, fromEnum y ..] enumFromThenTo x y z = map toEnum [fromEnum x, fromEnum y .. fromEnum z] class Bounded a where minBound :: a maxBound :: a -- Numeric classes class (Eq a, Show a) => Num a where (+), (-), (*) :: a -> a -> a negate :: a -> a abs, signum :: a -> a fromInteger :: Integer -> a -- Minimal complete definition: -- All, except negate or (-) x - y = x + negate y negate x = 0 - x class (Num a, Ord a) => Real a where toRational :: a -> Rational class (Real a, Enum a) => Integral a where quot, rem :: a -> a -> a div, mod :: a -> a -> a quotRem, divMod :: a -> a -> (a,a) toInteger :: a -> Integer -- Minimal complete definition: -- quotRem, toInteger n `quot` d = q where (q,r) = quotRem n d n `rem` d = r where (q,r) = quotRem n d n `div` d = q where (q,r) = divMod n d n `mod` d = r where (q,r) = divMod n d divMod n d = if signum r == - signum d then (q-1, r+d) else qr where qr@(q,r) = quotRem n d class (Num a) => Fractional a where (/) :: a -> a -> a recip :: a -> a fromRational :: Rational -> a -- Minimal complete definition: -- fromRational and (recip or (/)) recip x = 1 / x x / y = x * recip y class (Fractional a) => Floating a where pi :: a exp, log, sqrt :: a -> a (**), logBase :: a -> a -> a sin, cos, tan :: a -> a asin, acos, atan :: a -> a sinh, cosh, tanh :: a -> a asinh, acosh, atanh :: a -> a -- Minimal complete definition: -- pi, exp, log, sin, cos, sinh, cosh -- asin, acos, atan -- asinh, acosh, atanh x ** y = exp (log x * y) logBase x y = log y / log x sqrt x = x ** 0.5 tan x = sin x / cos x tanh x = sinh x / cosh x class (Real a, Fractional a) => RealFrac a where properFraction :: (Integral b) => a -> (b,a) truncate, round :: (Integral b) => a -> b ceiling, floor :: (Integral b) => a -> b -- Minimal complete definition: -- properFraction truncate x = m where (m,_) = properFraction x round x = let (n,r) = properFraction x m = if r < 0 then n - 1 else n + 1 in case signum (abs r - 0.5) of -1 -> n 0 -> if even n then n else m 1 -> m ceiling x = if r > 0 then n + 1 else n where (n,r) = properFraction x floor x = if r < 0 then n - 1 else n where (n,r) = properFraction x class (RealFrac a, Floating a) => RealFloat a where floatRadix :: a -> Integer floatDigits :: a -> Int floatRange :: a -> (Int,Int) decodeFloat :: a -> (Integer,Int) encodeFloat :: Integer -> Int -> a exponent :: a -> Int significand :: a -> a scaleFloat :: Int -> a -> a isNaN, isInfinite, isDenormalized, isNegativeZero, isIEEE :: a -> Bool atan2 :: a -> a -> a -- Minimal complete definition: -- All except exponent, significand, -- scaleFloat, atan2 exponent x = if m == 0 then 0 else n + floatDigits x where (m,n) = decodeFloat x significand x = encodeFloat m (- floatDigits x) where (m,_) = decodeFloat x scaleFloat k x = encodeFloat m (n+k) where (m,n) = decodeFloat x atan2 y x | x>0 = atan (y/x) | x==0 && y>0 = pi/2 | x<0 && y>0 = pi + atan (y/x) |(x<=0 && y<0) || (x<0 && isNegativeZero y) || (isNegativeZero x && isNegativeZero y) = -atan2 (-y) x | y==0 && (x<0 || isNegativeZero x) = pi -- must be after the previous test on zero y | x==0 && y==0 = y -- must be after the other double zero tests | otherwise = x + y -- x or y is a NaN, return a NaN (via +) -- Numeric functions subtract :: (Num a) => a -> a -> a subtract = flip (-) even, odd :: (Integral a) => a -> Bool even n = n `rem` 2 == 0 odd = not . even gcd :: (Integral a) => a -> a -> a gcd 0 0 = error "Prelude.gcd: gcd 0 0 is undefined" gcd x y = gcd' (abs x) (abs y) where gcd' x 0 = x gcd' x y = gcd' y (x `rem` y) lcm :: (Integral a) => a -> a -> a lcm _ 0 = 0 lcm 0 _ = 0 lcm x y = abs ((x `quot` (gcd x y)) * y) (^) :: (Num a, Integral b) => a -> b -> a x ^ 0 = 1 x ^ n | n > 0 = f x (n-1) x where f _ 0 y = y f x n y = g x n where g x n | even n = g (x*x) (n `quot` 2) | otherwise = f x (n-1) (x*y) _ ^ _ = error "Prelude.^: negative exponent" (^^) :: (Fractional a, Integral b) => a -> b -> a x ^^ n = if n >= 0 then x^n else recip (x^(-n)) fromIntegral :: (Integral a, Num b) => a -> b fromIntegral = fromInteger . toInteger realToFrac :: (Real a, Fractional b) => a -> b realToFrac = fromRational . toRational -- Monadic classes class Functor f where fmap :: (a -> b) -> f a -> f b class Monad m where (>>=) :: m a -> (a -> m b) -> m b (>>) :: m a -> m b -> m b return :: a -> m a fail :: String -> m a -- Minimal complete definition: -- (>>=), return m >> k = m >>= \_ -> k fail s = error s sequence :: Monad m => [m a] -> m [a] sequence = foldr mcons (return []) where mcons p q = p >>= \x -> q >>= \y -> return (x:y) sequence_ :: Monad m => [m a] -> m () sequence_ = foldr (>>) (return ()) -- The xxxM functions take list arguments, but lift the function or -- list element to a monad type mapM :: Monad m => (a -> m b) -> [a] -> m [b] mapM f as = sequence (map f as) mapM_ :: Monad m => (a -> m b) -> [a] -> m () mapM_ f as = sequence_ (map f as) (=<<) :: Monad m => (a -> m b) -> m a -> m b f =<< x = x >>= f -- Trivial type -- data () = () deriving (Eq, Ord, Enum, Bounded) -- Not legal Haskell; for illustration only -- Function type -- identity function id :: a -> a id x = x -- constant function const :: a -> b -> a const x _ = x -- function composition (.) :: (b -> c) -> (a -> b) -> a -> c f . g = \ x -> f (g x) -- flip f takes its (first) two arguments in the reverse order of f. flip :: (a -> b -> c) -> b -> a -> c flip f x y = f y x seq :: a -> b -> b seq = undefined -- Primitive -- right-associating infix application operators -- (useful in continuation-passing style) ($), ($!) :: (a -> b) -> a -> b f $ x = f x f $! x = x `seq` f x -- Boolean type data Bool = False | True deriving (Eq, Ord, Enum, Read, Show, Bounded) -- Boolean functions (&&), (||) :: Bool -> Bool -> Bool True && x = x False && _ = False True || _ = True False || x = x not :: Bool -> Bool not True = False not False = True otherwise :: Bool otherwise = True -- Character type data Char -- = ... 'a' | 'b' ... -- Unicode values instance Eq Char where c == c' = fromEnum c == fromEnum c' instance Ord Char where c <= c' = fromEnum c <= fromEnum c' instance Enum Char where toEnum = primIntToChar fromEnum = primCharToInt enumFrom c = map toEnum [fromEnum c .. fromEnum (maxBound::Char)] enumFromThen c c' = map toEnum [fromEnum c, fromEnum c' .. fromEnum lastChar] where lastChar :: Char lastChar | c' < c = minBound | otherwise = maxBound instance Bounded Char where minBound = '\0' maxBound = primUnicodeMaxChar type String = [Char] -- Maybe type data Maybe a = Nothing | Just a deriving (Eq, Ord, Read, Show) maybe :: b -> (a -> b) -> Maybe a -> b maybe n f Nothing = n maybe n f (Just x) = f x instance Functor Maybe where fmap f Nothing = Nothing fmap f (Just x) = Just (f x) instance Monad Maybe where (Just x) >>= k = k x Nothing >>= k = Nothing return = Just fail s = Nothing -- Either type data Either a b = Left a | Right b deriving (Eq, Ord, Read, Show) either :: (a -> c) -> (b -> c) -> Either a b -> c either f g (Left x) = f x either f g (Right y) = g y -- IO type data IO a {- = ... -- abstract instance Functor IO where fmap f x = x >>= (return . f) instance Monad IO where (>>=) = ... return = ... fail s = ioError (userError s) -} -- Ordering type data Ordering = LT | EQ | GT deriving (Eq, Ord, Enum, Read, Show, Bounded) -- Standard numeric types. The data declarations for these types cannot -- be expressed directly in Haskell since the constructor lists would be -- far too large. data Int {- = minBound ... -1 | 0 | 1 ... maxBound instance Eq Int where ... instance Ord Int where ... instance Num Int where ... instance Real Int where ... instance Integral Int where ... instance Enum Int where ... instance Bounded Int where ... data Integer = ... -1 | 0 | 1 ... instance Eq Integer where ... instance Ord Integer where ... instance Num Integer where ... instance Real Integer where ... instance Integral Integer where ... instance Enum Integer where ... data Float instance Eq Float where ... instance Ord Float where ... instance Num Float where ... instance Real Float where ... instance Fractional Float where ... instance Floating Float where ... instance RealFrac Float where ... instance RealFloat Float where ... data Double instance Eq Double where ... instance Ord Double where ... instance Num Double where ... instance Real Double where ... instance Fractional Double where ... instance Floating Double where ... instance RealFrac Double where ... instance RealFloat Double where ... -} -- The Enum instances for Floats and Doubles are slightly unusual. -- The `toEnum' function truncates numbers to Int. The definitions -- of enumFrom and enumFromThen allow floats to be used in arithmetic -- series: [0,0.1 .. 0.95]. However, roundoff errors make these somewhat -- dubious. This example may have either 10 or 11 elements, depending on -- how 0.1 is represented. instance Enum Float where succ x = x+1 pred x = x-1 toEnum = fromIntegral fromEnum = fromInteger . truncate -- may overflow enumFrom = numericEnumFrom enumFromThen = numericEnumFromThen enumFromTo = numericEnumFromTo enumFromThenTo = numericEnumFromThenTo instance Enum Double where succ x = x+1 pred x = x-1 toEnum = fromIntegral fromEnum = fromInteger . truncate -- may overflow enumFrom = numericEnumFrom enumFromThen = numericEnumFromThen enumFromTo = numericEnumFromTo enumFromThenTo = numericEnumFromThenTo numericEnumFrom :: (Fractional a) => a -> [a] numericEnumFromThen :: (Fractional a) => a -> a -> [a] numericEnumFromTo :: (Fractional a, Ord a) => a -> a -> [a] numericEnumFromThenTo :: (Fractional a, Ord a) => a -> a -> a -> [a] numericEnumFrom = iterate (+1) numericEnumFromThen n m = iterate (+(m-n)) n numericEnumFromTo n m = takeWhile (<= m+1/2) (numericEnumFrom n) numericEnumFromThenTo n n' m = takeWhile p (numericEnumFromThen n n') where p | n' >= n = (<= m + (n'-n)/2) | otherwise = (>= m + (n'-n)/2) -- Lists -- data [a] = [] | a : [a] deriving (Eq, Ord) -- Not legal Haskell; for illustration only instance Functor [] where fmap = map instance Monad [] where m >>= k = concat (map k m) return x = [x] fail s = [] -- Tuples -- data (a,b) = (a,b) deriving (Eq, Ord, Bounded) -- data (a,b,c) = (a,b,c) deriving (Eq, Ord, Bounded) -- Not legal Haskell; for illustration only -- component projections for pairs: -- (NB: not provided for triples, quadruples, etc.) fst :: (a,b) -> a fst (x,y) = x snd :: (a,b) -> b snd (x,y) = y -- curry converts an uncurried function to a curried function; -- uncurry converts a curried function to a function on pairs. curry :: ((a, b) -> c) -> a -> b -> c curry f x y = f (x, y) uncurry :: (a -> b -> c) -> ((a, b) -> c) uncurry f p = f (fst p) (snd p) -- Misc functions -- until p f yields the result of applying f until p holds. until :: (a -> Bool) -> (a -> a) -> a -> a until p f x | p x = x | otherwise = until p f (f x) -- asTypeOf is a type-restricted version of const. It is usually used -- as an infix operator, and its typing forces its first argument -- (which is usually overloaded) to have the same type as the second. asTypeOf :: a -> a -> a asTypeOf = const -- error stops execution and displays an error message error :: String -> a error = primError -- It is expected that compilers will recognize this and insert error -- messages that are more appropriate to the context in which undefined -- appears. undefined :: a undefined = error "Prelude.undefined"