module GF.Command.TreeOperations ( treeOp, allTreeOps, treeChunks ) where import PGF(Expr,PGF,CId,compute,mkApp,unApp,unapply,unMeta,exprSize,exprFunctions) import PGF.Data(Expr(EApp,EFun)) import PGF.TypeCheck(inferExpr) import Data.List type TreeOp = [Expr] -> [Expr] treeOp :: PGF -> String -> Maybe (Either TreeOp (CId -> TreeOp)) treeOp pgf f = fmap snd $ lookup f $ allTreeOps pgf allTreeOps :: PGF -> [(String,(String,Either TreeOp (CId -> TreeOp)))] allTreeOps pgf = [ ("compute",("compute by using semantic definitions (def)", Left $ map (compute pgf))), ("transfer",("apply this transfer function to all maximal subtrees of suitable type", Right $ \f -> map (transfer pgf f))), -- HL 12/24, modified from gf-3.3 ("largest",("sort trees from largest to smallest, in number of nodes", Left $ largest)), ("nub\t",("remove duplicate trees", Left $ nub)), ("smallest",("sort trees from smallest to largest, in number of nodes", Left $ smallest)), ("subtrees",("return all fully applied subtrees (stopping at abstractions), by default sorted from the largest", Left $ concatMap subtrees)), ("funs\t",("return all fun functions appearing in the tree, with duplications", Left $ \es -> [mkApp f [] | e <- es, f <- exprFunctions e])) ] largest :: [Expr] -> [Expr] largest = reverse . smallest smallest :: [Expr] -> [Expr] smallest = sortBy (\t u -> compare (exprSize t) (exprSize u)) treeChunks :: Expr -> [Expr] treeChunks = snd . cks where cks t = case unapply t of (t, ts) -> case unMeta t of Just _ -> (False,concatMap (snd . cks) ts) Nothing -> case unzip (map cks ts) of (bs,_) | and bs -> (True, [t]) (_,cts) -> (False,concat cts) subtrees :: Expr -> [Expr] subtrees t = t : case unApp t of Just (f,ts) -> concatMap subtrees ts _ -> [] -- don't go under abstractions -- Apply transfer function f:C -> D to all maximal subtrees s:C of tree e and replace -- these s by the values of f(s). This modifies the 'simple-minded transfer' of gf-3.3. -- If applied to strict subtrees s of e, better use with f:C -> C only. HL 12/2024 transfer :: PGF -> CId -> Expr -> Expr transfer pgf f e = case inferExpr pgf (appf e) of Left _err -> case e of EApp g a -> EApp (transfer pgf f g) (transfer pgf f a) _ -> e Right _ty -> case (compute pgf (appf e)) of v | v /= (appf e) -> v _ -> e -- default case of f, or f has no computation rule where appf = EApp (EFun f)