{-| Copyright : (C) 2017, Google Inc 2019, Myrtle Software Ltd 2025, QBayLogic B.V. License : BSD2 (see the file LICENSE) Maintainer : QBayLogic B.V. <devops@qbaylogic.com> We simulate DDR signal by using 'Signal's which have exactly half the period (or double the speed) of our normal 'Signal's. The primitives in this module can be used to produce or consume DDR signals. DDR signals are not meant to be used internally in a design, but only to communicate with the outside world. In some cases hardware specific DDR IN registers can be inferred by synthesis tools from these generic primitives. But to be sure your design will synthesize to dedicated hardware resources use the functions from "Clash.Intel.DDR" or "Clash.Xilinx.DDR". -} {-# LANGUAGE CPP #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE QuasiQuotes #-} {-# LANGUAGE TemplateHaskellQuotes #-} {-# LANGUAGE TypeFamilies #-} module Clash.Explicit.DDR ( ddrIn , ddrOut , ddrForwardClock -- * Internal , ddrIn# , ddrOut# , ddrForwardClock# ) where import Data.List.Infinite (Infinite(..), (...)) import Data.String.Interpolate (__i) import GHC.Stack (HasCallStack, withFrozenCallStack) import Unsafe.Coerce (unsafeCoerce) import Clash.Annotations.Primitive (hasBlackBox, Primitive(..), HDL(..)) import Clash.Explicit.Prelude hiding ((:<)) import Clash.Signal.Internal {- $setup >>> :set -XNoImplicitPrelude -XTypeFamilies -XFlexibleInstances >>> import Clash.Explicit.Prelude >>> import Clash.Explicit.DDR >>> :{ type DDR = "DDR" :: Domain instance KnownDomain "DDR" where type KnownConf "DDR" = 'DomainConfiguration "DDR" 5000 'Rising 'Asynchronous 'Defined 'ActiveHigh knownDomain = SDomainConfiguration SSymbol SNat SRising SAsynchronous SDefined SActiveHigh :} -} -- | DDR input primitive -- -- Consumes a DDR input signal and produces a regular signal containing a pair -- of values. -- -- Data is clocked in on both edges of the clock signal. We can discern the -- /active edge/ of the clock and the /other edge/. When the domain has the -- rising edge as the active edge (which is the most common), this means that -- the /rising/ edge is the /active/ edge and the /falling/ edge is the /other/ -- edge. -- -- Of the output pair @(o0, o1)@, @o0@ is the data clocked in on the /other/ -- edge and @o1@ is the data clocked in on the /active/ edge, and @o0@ comes -- before @o1@ in time. With a domain where the rising edge is the active edge, -- this means @o0@ is clocked in on the falling clock edge and @o1@ is clocked -- in on the rising clock edge. For a domain with the falling edge as the active -- edge, this is the other way around, but @o0@ still comes before @o1@ in time. -- -- >>> sampleN 5 $ ddrIn @Int @System @DDR clockGen resetGen enableGen (-1,-2,-3) (fromList [0..10]) -- [(-1,-2),(-1,-2),(-3,2),(3,4),(5,6)] ddrIn :: forall a dom domDDR . HasCallStack => NFDataX a => KnownDomain dom => KnownDomain domDDR => DomainPeriod dom ~ (2 * DomainPeriod domDDR) => Clock dom -> Reset dom -> Enable dom -> (a, a, a) -- ^ Reset values -> Signal domDDR a -- ^ DDR input signal -> Signal dom (a, a) -- ^ Normal speed output pair @(o0, o1)@ ddrIn clk rst en (i0,i1,i2) = withFrozenCallStack $ ddrIn# clk rst en i0 i1 i2 -- For details about all the seq's en seqX's -- see the [Note: register strictness annotations] in Clash.Signal.Internal ddrIn# :: forall a dom domDDR . HasCallStack => NFDataX a => KnownDomain dom => KnownDomain domDDR => DomainPeriod dom ~ (2 * DomainPeriod domDDR) => Clock dom -> Reset dom -> Enable dom -> a -> a -> a -> Signal domDDR a -> Signal dom (a,a) ddrIn# (Clock _ Nothing) (unsafeToActiveHigh -> hRst) (fromEnable -> ena) i0 i1 i2 = case resetKind @domDDR of SAsynchronous -> goAsync ( deepErrorX "ddrIn: initial value 0 undefined" , deepErrorX "ddrIn: initial value 1 undefined" , deepErrorX "ddrIn: initial value 2 undefined" ) hRst ena SSynchronous -> goSync ( deepErrorX "ddrIn: initial value 0 undefined" , deepErrorX "ddrIn: initial value 1 undefined" , deepErrorX "ddrIn: initial value 2 undefined" ) hRst ena where goSync :: (a, a, a) -> Signal dom Bool -> Signal dom Bool -> Signal domDDR a -> Signal dom (a,a) goSync (o0,o1,o2) rt@(~(r :- rs)) ~(e :- es) as@(~(x0 :- x1 :- xs)) = let (o0',o1',o2') = if r then (i0,i1,i2) else (o2,x0,x1) in o0 `seqX` o1 `seqX` (o0,o1) :- (rt `seq` as `seq` if e then goSync (o0',o1',o2') rs es xs else goSync (o0 ,o1 ,o2) rs es xs) goAsync :: (a, a, a) -> Signal dom Bool -> Signal dom Bool -> Signal domDDR a -> Signal dom (a, a) goAsync (o0,o1,o2) ~(r :- rs) ~(e :- es) as@(~(x0 :- x1 :- xs)) = let (o0',o1',o2',o3',o4') = if r then (i0,i1,i0,i1,i2) else (o0,o1,o2,x0,x1) in o0' `seqX` o1' `seqX` (o0',o1') :- (as `seq` if e then goAsync (o2',o3',o4') rs es xs else goAsync (o0',o1',o2') rs es xs) ddrIn# _ _ _ _ _ _ = error "ddrIn#: dynamic clocks not supported" -- See: https://github.com/clash-lang/clash-compiler/pull/2511 {-# CLASH_OPAQUE ddrIn# #-} {-# ANN ddrIn# hasBlackBox #-} -- | DDR output primitive -- -- Produces a DDR output signal from a normal signal of pairs of input. -- -- Data is clocked out on both edges of the clock signal. We can discern the -- /active edge/ of the clock and the /other edge/. When the domain has the -- rising edge as the active edge (which is the most common), this means that -- the /rising/ edge is the /active/ edge and the /falling/ edge is the /other/ -- edge. -- -- Of the input pair @(i0, i1)@, @i0@ is the data clocked out on the /active/ -- edge and @i1@ is the data clocked out on the /other/ edge, and @i0@ comes -- before @i1@ in time. With a domain where the rising edge is the active edge, -- this means @i0@ is clocked out on the rising clock edge and @i1@ is clocked -- out on the falling clock edge. For a domain with the falling edge as the -- active edge, this is the other way around, but @i0@ still comes before @i1@ -- in time. -- -- >>> sampleN 7 (ddrOut @Int @System @DDR clockGen resetGen enableGen (-1) (fromList [(0,1),(2,3),(4,5)])) -- [-1,-1,-1,2,3,4,5] ddrOut :: forall a dom domDDR . HasCallStack => NFDataX a => KnownDomain dom => KnownDomain domDDR => DomainPeriod dom ~ (2 * DomainPeriod domDDR) => Clock dom -> Reset dom -> Enable dom -> a -- ^ Reset value -> Signal dom (a, a) -- ^ Normal speed input pair @(i0, i1)@ -> Signal domDDR a -- ^ DDR output signal ddrOut clk rst en i0 = uncurry (withFrozenCallStack $ ddrOut# clk rst en i0) . unbundle ddrOut# :: forall a dom domDDR . HasCallStack => NFDataX a => KnownDomain dom => KnownDomain domDDR => DomainPeriod dom ~ (2 * DomainPeriod domDDR) => Clock dom -> Reset dom -> Enable dom -> a -> Signal dom a -> Signal dom a -> Signal domDDR a ddrOut# clk rst en i0 xs ys = -- We only observe one reset value, because when the mux switches on the -- next clock level, the second register will already be outputting its -- first input. -- -- That is why we drop the first value of the stream. let (_ :- out) = zipSig xs' ys' in out where xs' = register# clk rst en (errorX "ddrOut: unreachable error") i0 xs ys' = register# clk rst en (deepErrorX "ddrOut: initial value undefined") i0 ys zipSig (a :- as) (b :- bs) = a :- b :- zipSig as bs -- See: https://github.com/clash-lang/clash-compiler/pull/2511 {-# CLASH_OPAQUE ddrOut# #-} {-# ANN ddrOut# hasBlackBox #-} -- | Use a DDR output primitive to forward a clock to an output pin -- -- This function allows outputting a clock signal on a DDR-capable output pin. -- As with the DDR output primitive itself, the created clock cannot be used -- internally in the design. -- -- The @ddrOut@ primitive passed in will always have its enable asserted. If the -- @Enable@ input of @ddrForwardClock@ is deasserted, the data inputs of the -- @ddrOut@ primitive will switch to achieve the desired output signal. This is -- because the behavior of the enable input of the DDR primitive differs between -- vendor-specific primitives. -- -- The @Reset@ input of this function is passed on to the @ddrOut@ primitive and -- not otherwise used by @ddrForwardClock@. -- -- With the @phase@ argument, the phase relation between input and output clock -- can be defined. With the argument @Nothing@, the clocks are in phase: the -- active edge of the output clock is on the active edge of the input clock, -- even if the domains differ on what the active edge is. -- -- With the @idle@ argument, the output level when the @Enable@ input is -- deasserted can be defined. With @Nothing@, it will be 0 for a clock with the -- rising edge as the active edge, and 1 for a clock with the falling edge as -- the active edge. -- -- __NB__: The deassertion of the @Enable@ input or the assertion of the @Reset@ -- input is not faithfully simulated in Haskell simulation: Haskell simulation -- of a Clash design has clocks that always run. The generated HDL will actually -- output an idle state when @Enable@ is deasserted (and the reset depends on -- the @ddrOut@ primitive used). ddrForwardClock :: forall domDDR domOut domIn . KnownDomain domOut => DomainPeriod domIn ~ DomainPeriod domOut => DomainPeriod domIn ~ (2 * DomainPeriod domDDR) => Clock domIn -> Reset domIn -> Enable domIn -> Maybe Bit -- ^ @idle@: Output value when @Enable@ is deasserted -> Maybe Bit -- ^ @phase@: Value to output at active edge of incoming clock -> (Clock domIn -> Reset domIn -> Enable domIn -> Signal domIn (Bit, Bit) -> Signal domDDR Bit) -- ^ @ddrOut@ primitive to use -> Clock domOut ddrForwardClock clk rst en idle phase oddr = ddrForwardClock# clk $ oddr clk rst enableGen ins where ins = mux (fromEnable en) (pure (activeLevel, complement activeLevel)) (pure (idleLevel, idleLevel)) activeLevel = case phase of Nothing -> case activeEdge @domOut of SRising -> 1 SFalling -> 0 Just x -> x idleLevel = case idle of Nothing -> case activeEdge @domOut of SRising -> 0 SFalling -> 1 Just x -> x ddrForwardClock# :: KnownDomain domOut => DomainPeriod domIn ~ DomainPeriod domOut => DomainPeriod domIn ~ (2 * DomainPeriod domDDR) => Clock domIn -> Signal domDDR Bit -> Clock domOut ddrForwardClock# (Clock SSymbol periods) ddrSignal = Clock (ddrSignal `seq` SSymbol) (unsafeCoerce periods) -- See: https://github.com/clash-lang/clash-compiler/pull/2511 {-# CLASH_OPAQUE ddrForwardClock# #-} {-# ANN ddrForwardClock# ( let bbName = show 'ddrForwardClock# _knownDomOut :< _domInOutPeriod :< _domDDRPeriod :< _clkIn :< ddrSignal :< _ = ((0 :: Int)...) in InlineYamlPrimitive [VHDL] [__i| BlackBox: name: #{bbName} kind: Expression template: ~TYPMO'(~ARG[#{ddrSignal}]) workInfo: Never |]) #-} {-# ANN ddrForwardClock# ( let bbName = show 'ddrForwardClock# _knownDomOut :< _domInOutPeriod :< _domDDRPeriod :< _clkIn :< ddrSignal :< _ = ((0 :: Int)...) in InlineYamlPrimitive [Verilog, SystemVerilog] [__i| BlackBox: name: #{bbName} kind: Expression template: ~ARG[#{ddrSignal}] workInfo: Never |]) #-}