
An Introduction to

Aivika Simulation Library

David Sorokin <david.sorokin@gmail.com>,
Yoshkar-Ola, Russia

July 17, 2013

mailto:david.sorokin@gmail.com

2

Contents

1 Introduction 5

2 Dynamic Systems 7
2.1 Basic Simulation Monads . 7
2.2 Automating Simulation Experiments 11
2.3 Summary . 14

3 Discrete Event Simulation 17
3.1 Event Queue . 17
3.2 References and Variables . 18
3.3 Example MachRep1 . 19

4 Process-oriented Simulation 23
4.1 Discontinuous Processes . 23
4.2 Revised Example MachRep1 . 24
4.3 Resources . 27
4.4 Example MachRep2 . 27
4.5 Example MachRep3 . 30

5 Activity-oriented Simulation 35
5.1 Example MachRep1 Again . 36

6 Agent-based Modeling 39
6.1 Agents . 39
6.2 Example BassDiffusion . 41

7 System Dynamics 47
7.1 Table Functions . 48
7.2 Example FishBank . 48

8 Advanced Features 51
8.1 Using Variables . 51
8.2 Using Arrays . 52
8.3 Using Signals . 52
8.4 Queues LIFO and FIFO . 52

3

4 CONTENTS

8.5 External Parameters . 52
8.6 Monte-Carlo Simulation . 53
8.7 Simulation Experiments . 53
8.8 Gathering Statistics . 53

Chapter 1

Introduction

In 2009 in the course of my studying the functional programming I invented
one approach of integrating the system of ordinary differential equations that
used the standard Runge-Kutta and Euler’s methods but did it in a slightly
unusual way using the functional programming approach. Before that I had
developed a visual simulation tool Simtegra MapSys[3]1 together with Dr. Zahed
Sheikholeslami for the field of System Dynamics.

It has turned out that the new approach was not limited to the differential
equations only. The approach can be applied to the Discrete Event Simulation
(DES) and Agent-based Modeling too. My method can be applied to simulating
the wide range of dynamic systems that evolve and change in time.

Initially, I created an F# library which I called Aivika[6]. Here Aivika is
also a female Mari name pronounced with accent on the last syllable. Then I
ported the library to Haskell and Scala[10].

The Haskell version is hosted on HackageDB as a collection of three inter-
connected packages[7, 8, 9] that provide facilities for developing the models and
analyzing their results. The results can be prepared by Aivika in a form of
tables and charts, which requires minimal effort from the modeler.

Below is described the Haskell version of my simulation library Aivika. It
is more clear from the standpoint of maths and programming. Moreover, the
Haskell version is the most mature and it was tested on different known models.
Its API has been mostly stabilized. It works on Linux, Windows and OS X.

In chapter 2 two monads Dynamics and Simulation are introduced. They
are a key point of my approach. A computation within the Dynamics monad
can be identified with some dynamic process that changes in time points. The
Simulation monad already describes some computation that occurs only once
within the simulation run, for example, when an integral is created, or the
external parameter value is updated. Such a parameter can be either random,
or it can be defined according to some design of the simulation experiment, or
read from the file. It is important here that we can bind different computations

1The site is not accessible any more but the software is freely available by the link from
http://www.systemswiki.org in the Simulation Software section.

5

http://www.systemswiki.org

6 CHAPTER 1. INTRODUCTION

to create new ones. So, it is shown how the recursive differential equations with
loopbacks can be defined with help of these two monads and then simulated.

Chapter 3 introduces the Event Queue. The queue behaves like a coordina-
tion center processing the events. It is important that the event handlers are the
Dynamics computations, namely some actions specified at time points, which
binds the event processing with the main simulation. It allows us to simulate
the models under the event-oriented paradigm of DES.

Chapter 4 develops the idea of the Dynamics computation further. A new
monad Process is introduced. Only now the Process computation can be
identified with some discontinuous process. Such a process can suspend at any
time and then resume later. It is important that any Dynamics computation can
be embedded in the Process computation as well as the Process computation
can be started within the Dynamics computation at any specified time point. It
allows us to combine these computations and eventually allows us to simulate the
models under the process-oriented paradigm of DES, where all the coordination
is performed implicitly by the event queue.

Chapter 5 returns us to the Dynamics and Simulation monads. It shows
how we can simulate the models under the activity-oriented paradigm of DES.
Such an activity can be involved in the main simulation with help of the event
queue too.

Chapter 6 shows how my approach can be extended to support the basic
case of the agent-based modeling. Following the general line, the agent handlers
are the Dynamics computations. It allows us to involve the agents in the main
simulation.

In chapter 7 we return to the differential equations. A small example of the
System Dynamics model is provided.

The last chapter 8 summarizes my approach and briefly describes some topics
which were not covered in this document before but which I found important
to develop complex models, although it is difficult to describe everything as the
library becomes larger with every new version. However, the main idea remains
always very simple.

Chapter 2

Dynamic Systems

A dynamic system evolves and changes in time. An example is the system of
ordinary differential equations with help of which we can describe some model
of System Dynamics. Each time we define a Discrete Event Simulation model,
we also define a time varying dynamic system. Finally, in the Agent-based
Modeling we define the agents, where their behavior actually obeys the rules
of some dynamic system too. What unites all these cases is that the resulting
system depends on the time factor.

In mathematics there is a notion of the random process. This is a generaliza-
tion of the numeric function of time. The process can return arbitrary random
values in time points.

Strictly in a context of the Haskell programming language I will use an
abstract notion of the dynamic process. Arbitrary values can be returned by
such a dynamic process, including the values that can be non-determined, i.e.
depend on the IO monad, which is necessary to define the stochastic system.

2.1 Basic Simulation Monads

In the Aivika simulation library the dynamic process is represented as the
Dynamics monad.

module Simulation.Aivika.Dynamics

data Dynamics a

instance Functor Dynamics

instance Monad Dynamics

instance MonadFix Dynamics

instance MonadIO Dynamics

instance (Num a) => Num (Dynamics a)

instance (Fractional a) => Fractional (Dynamics a)

instance (Floating a) => Floating (Dynamics a)

7

8 CHAPTER 2. DYNAMIC SYSTEMS

So, any value of the Dynamics monad describes some dynamic process that
varies in time. This process can return arbitrary values including numbers in
time points. Moreover, we can construct mathematical expressions from such
processes, for this monad can be an instance of the standard type classes Num,
Fractional and Floating.

What makes it a monad is an ability to bind different processes into one
compound process. It is possible due to the fact that the Dynamics monad
is very similar to the standard Reader monad. We only pass in the current
simulation time and other related parameters to every part of the imperative
computation.

There are four primitives that allow us to receive the current values of the
time parameters:

module Simulation.Aivika.Dynamics.Base

starttime :: Dynamics Double

stoptime :: Dynamics Double

dt :: Dynamics Double

time :: Dynamics Double

The starttime computation represents the initial time of the simulation.
The stoptime computation gives us the information about the final time of the
simulation. The dt computation returns the integration time step. This is a her-
itage of System Dynamics, where we have to define an integration method with
help of which we are going to integrate the system of differential equations.
Aivika is a hybrid framework that supports different simulation paradigms.
Therefore we must know the integration method and its parameters to sim-
ulate the models of System Dynamics. Finally, the time built-in computation
returns the current simulation time.

Having only these definitions, we can define simple dynamic processes and
functions that operate on them:

sinWave :: Dynamics Double -> Dynamics Double -> Dynamics Double

sinWave a p = a * sin (2.0 * pi * time / p)

cosWave :: Dynamics Double -> Dynamics Double -> Dynamics Double

cosWave a p = a * cos (2.0 * pi * time / p)

Using the do-notation, we could achieve the same goal differently.

sinWave a p =

do a’ <- a

p’ <- p

t’ <- time

return $ a’ * sin (2.0 * pi * t’ / p’)

The dynamic process can return the integral value. But there is one difficulty
with the integral. It must be created before and this action must occur only
once within the simulation run.

To represent such actions, Aivika introduces the Simulation monad. It
represents a value that doesn’t change within the current simulation run, or

2.1. BASIC SIMULATION MONADS 9

defines some action which occurs during this run. For example, the Simulation
computation is ideal for representing the random external parameters for the
Monte-Carlo simulation, or for representing the actions that create integrals.
Like the Dynamics monad, the Simulation monad can be used for construct-
ing expressions. Moreover, any Simulation computation can be lifted to the
Dynamics computation.

module Simulation.Aivika.Dynamics.Simulation

data Simulation a

instance Functor Simulation

instance Monad Simulation

instance MonadFix Simulation

instance MonadIO Simulation

instance (Num a) => Num (Simulation a)

instance (Fractional a) => Fractional (Simulation a)

instance (Floating a) => Floating (Simulation a)

Here is the key function that creates an integral by the specified derivative
and initial value.

module Simulation.Aivika.Dynamics.SystemDynamics

integ :: Dynamics Double -> Dynamics Double -> Simulation (Dynamics Double)

To create loopbacks in the recursive differential equations, you should use
so called the recursive do-notation, which is possible due to the fact that the
Simulation monad is an instance of the MonadFix type class.

Let us consider the following ODE system:

ȧ = −ka× a, a(t0) = 100,

ḃ = ka× a− kb× b, b(t0) = 0,

ċ = kb× b, c(t0) = 0,

ka = 1,

kb = 1.

Its equivalent will take the following form in Aivika:

{-# LANGUAGE RecursiveDo #-}

...

model :: Simulation (Dynamics [Double])

model =

mdo a <- integ (- ka * a) 100

b <- integ (ka * a - kb * b) 0

c <- integ (kb * b) 0

let ka = 1

kb = 1

return $ sequence [time, a, b, c]

10 CHAPTER 2. DYNAMIC SYSTEMS

We can simulate this model in two stages. At first, we have to request for
the values of the dynamic processes time, a, b, c in some time points. There is
a plenty of such functions.

For simplicity, I will use that one which returns the value of the Dynamics

computation in the final time point. The function returns the result within the
Simulation computation, i.e. during the simulation run.

module Simulation.Aivika.Dynamics

runDynamicsInStopTime :: Dynamics a -> Simulation a

At second, we have to run the Simulation computation itself by specifying
the specs that have the obvious meaning:

module Simulation.Aivika.Dynamics.Simulation

runSimulation :: Simulation a -> Specs -> IO a

runSimulations :: Simulation a -> Specs -> Int -> [IO a]

data Specs = Specs { spcStartTime :: Double,

spcStopTime :: Double,

spcDT :: Double,

spcMethod :: Method }

deriving (Eq, Ord, Show)

data Method = Euler | RungeKutta2 | RungeKutta4

deriving (Eq, Ord, Show)

The specs are namely that thing which provides the starttime, stoptime,
dt and time built-in computations with the input data. The specified integra-
tion method has effect only on the integrals.

Let the initial time be 0, final time be 10, integration time step equal 0.001
and we apply the 4th order Runge-Kutta method.

specs = Specs { spcStartTime = 0,

spcStopTime = 10,

spcDT = 0.001,

spcMethod = RungeKutta4 }

Now we can simulate our ODE system.

main =

let s = model >>= runDynamicsInStopTime

in runSimulation s specs >>= print

We will receive the following simulation results in the final time point:

[10.0,

4.539992976248895e-3,

4.53999297624868e-2,

99.95006007726207]

2.2. AUTOMATING SIMULATION EXPERIMENTS 11

2.2 Automating Simulation Experiments

The Dynamics and Simulation monads are quite flexible. They are not only
monads but they allow using the recursive do-notation. Also they allow em-
bedding any IO computation. It means that very many simulation models can
be described in their language and then simulated using the corresponded run
functions by the specified simulation specs. But direct returning every simula-
tion variable and passing in it to the run functions is quite tedious. There is a
more simple solution, though.

The Aivika library has additional packages Aivika Experiment[8] and Aivika
Experiment Chart[9]. They are hosted on the HackageDB site as well as Aivika
itself[7]. These two packages allow automating the simulation experiments. The
packages were tested on Linux, Windows and OS X. What is important, they
use only public API of Aivika. They demonstrate the potential of the Aivika
simulation library.

The idea is as follows. There is type ExperimentData that contains all the
necessary information about the model variables to be analyzed. Also there
are String names of these variables. The modeler must create a model that
just returns a value of type Simulation ExperimentData. In case of need, the
model can be even closed-source.

module Simulation.Aivika.Experiment

data ExperimentData

data Experiment

Then the analyst, who can be the same or another person, creates an
Experiment value that knows how to interpret the provided ExperimentData.
It can describe in a very declarative manner what CSV files with the results
should be saved, what charts and histograms should be plotted, what statis-
tics summary should be calculated and so on. He/she only has to know those
String names of the simulation variables (which can be arrays and lists).

Finally, the analyst runs the simulation experiment. It can be either a single
simulation, or a parameterized Monte-Carlo simulation, say, consisting of 1000
parallel simulation runs depending on random external parameters.

runExperiment :: Experiment -> Simulation ExperimentData -> IO ()

runExperimentParallel :: Experiment -> Simulation ExperimentData -> IO ()

The both functions do the same, only the latter launches the simulation
runs in parallel1 as possible. They create an HTML page with the results of the
simulation experiment. This page can be observed in the Internet browser.

Returning to our example, the model can be rewritten in the following way:

{-# LANGUAGE RecursiveDo #-}

1If the source file was compiled with option -threaded and something like +RTS -N4 -RTS

was passed in to the executable. Please refer to the GHC documentation.

12 CHAPTER 2. DYNAMIC SYSTEMS

...

model :: Simulation ExperimentData

model =

mdo queue <- newQueue

a <- integ (- ka * a) 100

b <- integ (ka * a - kb * b) 0

c <- integ (kb * b) 0

let ka = 1

kb = 1

experimentDataInStartTime queue

[("t", seriesEntity "time" time),

("a", seriesEntity "a" a),

("b", seriesEntity "b" b),

("c", seriesEntity "c" c)]

Now we can refer to the simulation variables by their String names in our
experiment that describes what we want to do with our simulation model. Below
we want to see the experiment specs, plot the time series and save our results
in the CSV file.

experiment :: Experiment

experiment =

defaultExperiment {

experimentSpecs = specs,

experimentRunCount = 1,

experimentTitle = "Chemical Reaction",

experimentDescription = "Chemical Reaction as described in " ++

"the 5-minute tutorial of Berkeley-Madonna",

experimentGenerators =

[outputView defaultExperimentSpecsView,

outputView $ defaultTimeSeriesView {

timeSeriesTitle = "Time Series",

timeSeries = [Left "a", Left "b", Left "c"] },

outputView $ defaultTableView {

tableSeries = ["t", "a", "b", "c"] }] }

Our experiment defines only a single simulation run. Therefore we can use
any of the two run functions.

main = runExperiment experiment model

I saved it in file ChemicalReactionIntro.hs and launched from the Terminal
application on OS X. In my case I received the following output:

bash-3.2$ runghc ChemicalReactionIntro.hs

Using directory experiment

Generated file experiment/Time Series - 1.png

Generated file experiment/Table - 1.csv

Generated file experiment/index.html

It says that the new sub-directory experiment was generated in my working
directory (I could specify any file names in the experiment if I wished) and
it contains something that is very similar to the web page. Indeed, the sub-
directory contains the main index.html file, a chart and a CSV file as shown on
figure 2.1.

2.2. AUTOMATING SIMULATION EXPERIMENTS 13

Figure 2.1: The output directory of the simulation experiment.

Opening the generated index.html file in the Internet browser, I see a web
page with the chart and a hyper-link to the CSV file as shown on figure 2.2.

In my opinion the Aivika experiments are a very powerful tool for automatic
saving the results and for providing the preliminary statistical analysis. So, we
can apply the parameterized Monte-Carlo simulation and ask Aivika to plot the
deviation charts by rule 3-sigma, draw the histograms and collect the summary
by the statistics data. Two examples are provided below.

The deviation chart from figure 2.3 was received with help of the next code:

outputView $ defaultDeviationChartView {

deviationChartTitle = "The deviation chart for Net Income and Cash Flow",

deviationChartSeries = [Left netIncomeName,

Left netCashFlowName] },

The histogram from figure 2.4 was specified by the following code:

outputView $ defaultFinalHistogramView {

finalHistogramTitle = "Final Histogram - 5",

finalHistogramPlotTitle = "The distribution of the mean heating time " ++

"in the final simulation time point.",

finalHistogramSeries = [meanHeatingTimeName] },

Please refer to the documentation and examples provided with these libraries
for more details. Below in this document I will use only models that return
relatively simple data and don’t use the mentioned two packages. Mastering
Aivika depends on the knowledge of the simulation concepts and an ability to
use them. So, let us return to the modeling techniques.

14 CHAPTER 2. DYNAMIC SYSTEMS

Figure 2.2: Observing the results of the simulation experiment in the Internet
browser.

2.3 Summary

Thus, we saw that the system of differential equations can be modeled with
help of the Dynamics and Simulation monads. Actually, the equations can
be stochastic as the monads allow embedding any IO action such as generating
random number values.

In continuation of this subject the next chapter shows how these two monads
can be applied to the Discrete Event Simulation.

2.3. SUMMARY 15

Figure 2.3: The deviation chart by rule 3-sigma for the Financial model as
described in Vensim 5 Modeling Guide. The model depends on random external
parameters. The Monte-Carlo simulation with 1000 parallel runs was applied.

16 CHAPTER 2. DYNAMIC SYSTEMS

Figure 2.4: The histogram for the combined discrete-continuous model of the
Furnace. The Monte-Carlo simulation with 1000 parallel runs was applied.

Chapter 3

Discrete Event Simulation

The Discrete Event Simulation (DES) involves simulating variables that change
in discrete steps. Then an event usually implies some variable change. The
following three approaches are widely applied: activity-oriented, event-oriented
and process-oriented. All three are supported by Aivika. In this chapter we will
focus on the event-oriented simulation.

Under the event-oriented paradigm, we put all pending events in the pri-
ority queue, where the first event has the minimal activation time. Then we
sequentially activate the events removing them from the queue. During such an
activation we can add new events. This scheme is also called event-driven.

3.1 Event Queue

An event queue is the heart of the Aivika ecosystem. It coordinates different
parts of the model, usually implicitly, and it allows the simulation time to flow
synchronously from one entity to another.

There is a plenty of useful functions for working with the event queue. Here
and below I will state only the most essential.

module Simulation.Aivika.Dynamics.EventQueue

data EventQueue

newQueue :: Simulation EventQueue

enqueue :: EventQueue -> Double -> Dynamics () -> Dynamics ()

enqueue q t m

The newQueue function creates a new event queue within the Simulation

computation. The enqueue function is rather interesting. It adds the event
handler m to queue q. The event must be raised at time t. The result is a
Dynamics computation. The most exciting thing is that the event handler is
also a computation in the Dynamics monad. If we want to pass in some message
with the event then we should use a closure.

17

18 CHAPTER 3. DISCRETE EVENT SIMULATION

So, the event handler is a dynamic process that has a single purpose to
perform some side effect at the specified time.

To functionate properly, the event queue must be involved in the main sim-
ulation. Each of the next two functions return a computation that represents
a moving force of the queue. They differ only in one thing. The synchronous
version doesn’t allow calling from the past time point.

runQueue :: EventQueue -> Dynamics ()

runQueueSync :: EventQueue -> Dynamics ()

You will rarely need to call these functions explicitly in your models as they
are usually called implicitly by the built-in simulation entities of Aivika such as
references, variables and agents considered further in this document.

It finishes the event queue description. The queue is internally represented
as a heap-based priority queue. It is efficiently implemented using imperative
algorithms in the IO monad.

Before we proceed to an example, I will introduce a reference that can be
applied to store, update and read some data within the simulation.

3.2 References and Variables

A value of the Ref type is like the standard IORef value except for one thing.
The former is bound to the event queue. Before the reference value is requested
in some time point, the corresponded queue is checked whether there are pending
events that should be raised. It makes the model coordinated.

module Simulation.Aivika.Dynamics.Ref

data Ref a

newRef :: EventQueue -> a -> Simulation (Ref a)

readRef :: Ref a -> Dynamics a

writeRef :: Ref a -> a -> Dynamics ()

modifyRef :: Ref a -> (a -> a) -> Dynamics ()

Using the references, different parts of the model can communicate to each
other. If these references are bound to the same event queue then this commu-
nication will be coordinated. In general, this is a good rule to define only one
event queue for the entire model.

Actually, the common event queue could be embedded in the Simulation

computation, which would simplify the API interface of the creation functions.
But I left an opportunity for defining several event queues that might be run
in parallel within the same simulation run. Then every event queue would have
its own execution thread. But this is not implemented yet.

Meantime, if you need an analog of the Ref reference but that would keep
the history of past values, which can be important for combining the differential
equations with the DES model, then you should look at the Var type and its

3.3. EXAMPLE MACHREP1 19

unboxed version UVar. They have a similar interface and plus some functions for
extracting the history of values. Such UVar variables can be safely used within
the differential equations.

Each time the reference or variable changes, it emits a new Signal. Using
namely this property, the Aivika Experiment package[8] is notified about every
change of the observed simulation variables. But this is a subject of separate
description.

3.3 Example MachRep1

Now it is time to illustrate the simulation approach. I will use the following
task [1].

There are two machines, which sometimes break down. Up time is
exponentially distributed with mean 1.0, and repair time is expo-
nentially distributed with mean 0.5. There are two repairpersons,
so the two machines can be repaired simultaneously if they are down
at the same time. Output is long-run proportion of up time. Should
get value of about 0.66.

We create the Simulation computation that returns the long-run propor-
tion. Here we need an auxiliary function to generate exponentially distributed
random values. Then we run the simulation using the specified specs.

import System.Random

import Control.Monad.Trans

import Simulation.Aivika.Dynamics

import Simulation.Aivika.Dynamics.Simulation

import Simulation.Aivika.Dynamics.Base

import Simulation.Aivika.Dynamics.EventQueue

import Simulation.Aivika.Dynamics.Ref

upRate = 1.0 / 1.0 -- reciprocal of mean up time

repairRate = 1.0 / 0.5 -- reciprocal of mean repair time

specs = Specs { spcStartTime = 0.0,

spcStopTime = 1000.0,

spcDT = 1.0,

spcMethod = RungeKutta4 }

exprnd :: Double -> IO Double

exprnd lambda =

do x <- getStdRandom random

return (- log x / lambda)

model :: Simulation Double

model =

do queue <- newQueue

totalUpTime <- newRef queue 0.0

let machineBroken :: Double -> Dynamics ()

20 CHAPTER 3. DISCRETE EVENT SIMULATION

machineBroken startUpTime =

do finishUpTime <- time

modifyRef totalUpTime (+ (finishUpTime - startUpTime))

repairTime <- liftIO $ exprnd repairRate

-- enqueue a new event

let t = finishUpTime + repairTime

enqueue queue t machineRepaired

machineRepaired :: Dynamics ()

machineRepaired =

do startUpTime <- time

upTime <- liftIO $ exprnd upRate

-- enqueue a new event

let t = startUpTime + upTime

enqueue queue t $ machineBroken startUpTime

runDynamicsInStartTime $

do t0 <- starttime

-- start the first machine

enqueue queue t0 machineRepaired

-- start the second machine

enqueue queue t0 machineRepaired

runDynamicsInStopTime $

do x <- readRef totalUpTime

y <- stoptime

return $ x / (2 * y)

main = runSimulation model specs >>= print

Parameter spcDT of the simulation specs is not actually used here by Aivika.
The event queue doesn’t rely on the integration time points. It has its own
order of calculations concerning only with those time points at which the events
must be processed. The event queue is involved in the simulation through the
runQueueSync function, which is called implicitly when we call the readRef

function.
Here the event handlers are created by function machineBroken and value

machineRepaired. The latter is just a computation that has type Dynamics

(). The former is a function that accepts one argument. Given the start up
time, this function creates a computation of type Dynamics () too. In such a
way we can transfer with the event any data we want.

-- start the first machine

enqueue queue t0 machineRepaired

-- start the second machine

enqueue queue t0 machineRepaired

In this block we initialize the event queue passing in two events which should
be raised at the initial time of simulation. Each of the events corresponds to a

3.3. EXAMPLE MACHREP1 21

separate machine. We begin with the state at which the machine is repaired.
Note that the block is launched in the start time point within the Simulation

computation.
To switch from the repaired state to the broken one, we calculate the time

at which the machine should be broken and create a new event passing in the
start up time in the closure.

-- enqueue a new event

let t = startUpTime + upTime

enqueue queue t $ machineBroken startUpTime

After the machine is broken it must be repaired during the random time
with the specified rate. After this time is over the machine becomes repaired,
about which we add the corresponded event to the queue.

-- enqueue a new event

let t = finishUpTime + repairTime

enqueue queue t machineRepaired

During the repair time we update our counter using the modifyRef function.

modifyRef totalUpTime (+ (finishUpTime - startUpTime))

Finally, we request for the value in the last integration time point using the
runDynamicsInStopTime function. It calls the readRef function that in its turn
unwinds all the events starting from the initial integration time point, because
the reference is bound up with the event queue.

The next chapter shows how the same model can be simulated using the
process-oriented approach.

22 CHAPTER 3. DISCRETE EVENT SIMULATION

Chapter 4

Process-oriented Simulation

Under the process-oriented paradigm, we model simulation activities with help
of a special kind of processes. We can explicitly suspend and resume such pro-
cesses. Also we can request for and release of the resources implicitly suspending
and resuming the processes in case of need.

4.1 Discontinuous Processes

Aivika provides a special kind of processes which I will call discontinuous pro-
cesses to distinguish them from the defined earlier dynamic processes that had
type Dynamics. The discontinuous processes are important for the process-
oriented simulation. These processes can suspend at any time and then resume
later. It allows us to model more easily some activities.

So, a discontinuous process is a value of polymorphic type Process. In most
cases it can behave like the dynamic process. Indeed, any Dynamics computa-
tion can be lifted to the Process computation with help of the liftDynamics

function. For example, expression liftDynamics time returns the current sim-
ulation time as the Process computation.

The Process type is a monad. It allows us to build discontinuous processes
from small building pieces.

instance Functor Process

instance Monad Process

instance MonadIO Process

The main characteristic of the discontinuous process is its ability to suspend.
The next function suspend the current Process computation for the specified
time.

holdProcess :: Double -> Process ()

The process can also be passivated. Somewhere it is like a suspension but
lasts for an indefinite period of time. The current process is stopped and waits
for a moment until somebody else reactivates it.

23

24 CHAPTER 4. PROCESS-ORIENTED SIMULATION

passivateProcess :: Process ()

The difference between the hold and passivation is that the hold process
stops and adds an awakening event to the event queue that acts behind the
scene. Such a process is resumed right after the corresponded event is raised.
On the contrary, the passivated process stops and stores its continuation in a
special structure called a process ID.

The process ID is actually a handle. Each process is bound up with its
handle. They are one. We can use only unique handles. Two handles can be
tested for equality. Also we can request the process for its handle.

module Simulation.Aivika.Dynamics.Process

data ProcessID

instance Eq ProcessID

processID :: Process ProcessID

To reactivate another process, we must know its ID. Also we can test whether
a process with the specified ID is passivated.

The next two functions don’t affect the current computation. The reacti-
vated process is always started in another computation. Therefore the returned
below values are the Dynamics computations. They cannot stop the current pro-
cess, being called from it regardless of whether it is the Dynamics or Process

computation.

reactivateProcess :: ProcessID -> Dynamics ()

processPassive :: ProcessID -> Dynamics Bool

A time of creating the process ID and a time of starting the discontinuous
process are separated. It allows us to create IDs, define some logic for the
processes that would use these IDs and then already launch the processes.

newProcessID :: EventQueue -> Simulation ProcessID

runProcess :: Process () -> ProcessID -> Double -> Dynamics ()

The newProcessID function requires an event queue and creates an unique
process ID. The queue acts behind the scene each time we hold the process for
the specified time or reactivate it.

The runProcess function runs the discontinuous process at the specified
time. We must assign an unique ID to the new process.

The next section shows how we can apply the discontinuous processes to the
simulation.

4.2 Revised Example MachRep1

Now I will show how the model[1] from section 3.3 can be rewritten using the
discontinuous processes.

For simplicity, the problem statement is repeated.

4.2. REVISED EXAMPLE MACHREP1 25

There are two machines, which sometimes break down. Up time is
exponentially distributed with mean 1.0, and repair time is expo-
nentially distributed with mean 0.5. There are two repairpersons,
so the two machines can be repaired simultaneously if they are down
at the same time. Output is long-run proportion of up time. Should
get value of about 0.66.

The main idea is to represent every machine as a separate discontinuous
process, i.e. a computation in the Process monad.

import System.Random

import Control.Monad.Trans

import Simulation.Aivika.Dynamics

import Simulation.Aivika.Dynamics.Base

import Simulation.Aivika.Dynamics.Simulation

import Simulation.Aivika.Dynamics.EventQueue

import Simulation.Aivika.Dynamics.Ref

import Simulation.Aivika.Dynamics.Process

upRate = 1.0 / 1.0 -- reciprocal of mean up time

repairRate = 1.0 / 0.5 -- reciprocal of mean repair time

specs = Specs { spcStartTime = 0.0,

spcStopTime = 1000.0,

spcDT = 1.0,

spcMethod = RungeKutta4 }

exprnd :: Double -> IO Double

exprnd lambda =

do x <- getStdRandom random

return (- log x / lambda)

model :: Simulation Double

model =

do queue <- newQueue

totalUpTime <- newRef queue 0.0

pid1 <- newProcessID queue

pid2 <- newProcessID queue

let machine :: Process ()

machine =

do startUpTime <- liftDynamics time

upTime <- liftIO $ exprnd upRate

holdProcess upTime

finishUpTime <- liftDynamics time

liftDynamics $

modifyRef totalUpTime

(+ (finishUpTime - startUpTime))

repairTime <- liftIO $ exprnd repairRate

holdProcess repairTime

machine

runDynamicsInStartTime $

do t0 <- starttime

26 CHAPTER 4. PROCESS-ORIENTED SIMULATION

runProcess machine pid1 t0

runProcess machine pid2 t0

runDynamicsInStopTime $

do x <- readRef totalUpTime

y <- stoptime

return $ x / (2 * y)

main = runSimulation model specs >>= print

As before, the integration time step spcDT has no any sense for this model but
we have to define it, though. In case of the hybrid model the spcDT parameter
would play already an important role. But here the discontinuous processes are
implemented on top of the event queue that doesn’t use spcDT.

What is new is that how the machine is constructed. It is defined as a
discontinuous process that looks like an infinite loop which is terminated auto-
matically after the simulation is complete. In this loop we model the work of
the machine.

To get the current simulation time, we use the time built-in that returns a
computation of type Dynamics Double. Such a computation must be lifted to be
involved in the upper Process computation which has another type. Therefore
we apply the liftDynamics function. In such a way we can receive the current
simulation time within the Process computation.

startUpTime <- liftDynamics time

In the same way we can receive the current value of any computation in
the Dynamics monad, including the integrals. It allows us to truly build hybrid
models.

After we receive the current simulation time and calculate the up time, we
suspend the current process.

holdProcess upTime

In the specified time the process will resume and its control flow will continue.
Then we update the counter, calculate the repair time and suspend the process
again.

After the process resumes at the second time we repeat all calling the process
computation recursively. It is safe enough from the technical point of view if
you are interested in details but this subject goes beyond this document. In
short, it won’t consume the stack.

To initiate two separate processes at the start time of simulation, we use the
runProcess function, which is called in the initial time point.

runProcess machine pid1 t0

runProcess machine pid2 t0

Note that the process IDs must be different. It will be a run-time error if
the already used ID is used again.

Before we proceed to more complex models I will describe that how in Aivika
we can model the limited resources.

4.3. RESOURCES 27

4.3 Resources

In Aivika the limited resources are modeled with help of the Resource data
type. We pass in an event queue and the initial count to the newResource

function that creates a new resource within the Simulation computation.

module Simulation.Aivika.Dynamics.Resource

data Resource

instance Eq Resource

newResource :: EventQueue -> Int -> Simulation Resource

newResourceWithCount :: EventQueue -> Int -> Int -> Simulation Resource

The event queue is needed to suspend those discontinuous processes that
try to request for the resource in case of its deficiency. In general, to acquire
the next unit of the resource, we call the requestResource function within the
Process computation.

requestResource :: Resource -> Process ()

If the resource is available then its count is decreased; otherwise, the process
is suspended until some other process releases the previously acquired resource
with help of the next function.

releaseResource :: Resource -> Process ()

Any acquired resource must be released. It will be a logical error if you
release the resource that was not acquired with help of the requestResource

function. It would be too costly to track such errors. Therefore this is your
responsibility to release the acquired resources.

To receive the available count of the limited resource, we can call function
resourceCount. The second function returns immediately the initial count of
the specified resource. The third one returns the event queue that actually
manages the resource and processes behind the scene.

resourceCount :: Resource -> Dynamics Int

resourceInitCount :: Resource -> Int

resourceQueue :: Resource -> EventQueue

This small set of new functions allows us to build models with more complex
behavior. Please refer to the documentation which contains more functions for
working with the resources.

4.4 Example MachRep2

Let us go on with the following task[1].

28 CHAPTER 4. PROCESS-ORIENTED SIMULATION

Two machines, but sometimes break down. Up time is exponen-
tially distributed with mean 1.0, and repair time is exponentially
distributed with mean 0.5. In this example, there is only one re-
pairperson, so the two machines cannot be repaired simultaneously
if they are down at the same time.

In addition to finding the long-run proportion of up time, let us also
find the long-run proportion of the time that a given machine does
not have immediate access to the repairperson when the machine
breaks down. Output values should be about 0.6 and 0.67.

Now we have to work with the limited resource, namely the repairperson.
In many places the model is similar to the previous one. Only the block in
which the machines are repaired are guarded by functions requestResource

and releaseResource. Also we add two new counters.

import System.Random

import Control.Monad

import Control.Monad.Trans

import Simulation.Aivika.Dynamics

import Simulation.Aivika.Dynamics.Simulation

import Simulation.Aivika.Dynamics.Base

import Simulation.Aivika.Dynamics.EventQueue

import Simulation.Aivika.Dynamics.Ref

import Simulation.Aivika.Dynamics.Resource

import Simulation.Aivika.Dynamics.Process

upRate = 1.0 / 1.0 -- reciprocal of mean up time

repairRate = 1.0 / 0.5 -- reciprocal of mean repair time

specs = Specs { spcStartTime = 0.0,

spcStopTime = 1000.0,

spcDT = 1.0,

spcMethod = RungeKutta4 }

exprnd :: Double -> IO Double

exprnd lambda =

do x <- getStdRandom random

return (- log x / lambda)

model :: Simulation (Double, Double)

model =

do queue <- newQueue

-- number of times the machines have broken down

nRep <- newRef queue 0

-- number of breakdowns in which the machine

-- started repair service right away

nImmedRep <- newRef queue 0

-- total up time for all machines

totalUpTime <- newRef queue 0.0

4.4. EXAMPLE MACHREP2 29

repairPerson <- newResource queue 1

pid1 <- newProcessID queue

pid2 <- newProcessID queue

let machine :: Process ()

machine =

do startUpTime <- liftDynamics time

upTime <- liftIO $ exprnd upRate

holdProcess upTime

finishUpTime <- liftDynamics time

liftDynamics $ modifyRef totalUpTime

(+ (finishUpTime - startUpTime))

-- check the resource availability

liftDynamics $

do modifyRef nRep (+ 1)

n <- resourceCount repairPerson

when (n == 1) $

modifyRef nImmedRep (+ 1)

requestResource repairPerson

repairTime <- liftIO $ exprnd repairRate

holdProcess repairTime

releaseResource repairPerson

machine

runDynamicsInStartTime $

do t0 <- starttime

runProcess machine pid1 t0

runProcess machine pid2 t0

runDynamicsInStopTime $

do x <- readRef totalUpTime

y <- stoptime

n <- readRef nRep

nImmed <- readRef nImmedRep

return (x / (2 * y),

fromIntegral nImmed / fromIntegral n)

main = runSimulation model specs >>= print

We create two new counters to find the proportion of the time that a given
machine does not have immediate access to the repairperson.

nRep <- newRef queue 0

nImmedRep <- newRef queue 0

Also there is only one repairperson. The corresponded resource is created in
the following line:

repairPerson <- newResource queue 1

To check whether the repairperson is free or busy, we use the resourceCount
function. The next code increases the second counter only if he/she is free. If
the repairperson is busy then n equals 0.

30 CHAPTER 4. PROCESS-ORIENTED SIMULATION

liftDynamics $

do modifyRef nRep (+ 1)

n <- resourceCount repairPerson

when (n == 1) $

modifyRef nImmedRep (+ 1)

To repair the broken machine, we have to acquire the resource busying the re-
pairperson. This operation suspends the current discontinuous process if he/she
is already busy with another machine.

requestResource repairPerson

After the resource is acquired, the repairing process is modeled as a short-
time suspension of the current process. Then the machine is counted repaired
and we must release the resource, i.e. free the repairperson.

releaseResource repairPerson

Then we repeat the loop recursively calling the same computation. It should
be a general rule in modeling the discontinuous processes.

The next example is more complicated and involves a process passivation
and the following reactivation.

4.5 Example MachRep3

The next model[1] has a more complex behavior.

Variation of the previous models. Two machines, but sometimes
break down. Up time is exponentially distributed with mean 1.0,
and repair time is exponentially distributed with mean 0.5. In this
example, there is only one repairperson, and she is not summoned
until both machines are down. We find the proportion of up time.
It should come out to about 0.45.

To model the work of two machines, we have to passivate the first broken
machine until the second machine is broken too. Then we summon the repair-
person, reactivating the first machine. Therefore the discontinuous process that
models the machine must know the process ID of another machine. We pass in
it as an argument.

import System.Random

import Control.Monad

import Control.Monad.Trans

import Simulation.Aivika.Dynamics

import Simulation.Aivika.Dynamics.Simulation

import Simulation.Aivika.Dynamics.Base

import Simulation.Aivika.Dynamics.EventQueue

import Simulation.Aivika.Dynamics.Ref

import Simulation.Aivika.Dynamics.Resource

4.5. EXAMPLE MACHREP3 31

import Simulation.Aivika.Dynamics.Process

upRate = 1.0 / 1.0 -- reciprocal of mean up time

repairRate = 1.0 / 0.5 -- reciprocal of mean repair time

specs = Specs { spcStartTime = 0.0,

spcStopTime = 1000.0,

spcDT = 1.0,

spcMethod = RungeKutta4 }

exprnd :: Double -> IO Double

exprnd lambda =

do x <- getStdRandom random

return (- log x / lambda)

model :: Simulation Double

model =

do queue <- newQueue

-- number of machines currently up

nUp <- newRef queue 2

-- total up time for all machines

totalUpTime <- newRef queue 0.0

repairPerson <- newResource queue 1

pid1 <- newProcessID queue

pid2 <- newProcessID queue

let machine :: ProcessID -> Process ()

machine pid =

do startUpTime <- liftDynamics time

upTime <- liftIO $ exprnd upRate

holdProcess upTime

finishUpTime <- liftDynamics time

liftDynamics $ modifyRef totalUpTime

(+ (finishUpTime - startUpTime))

liftDynamics $ modifyRef nUp $ \a -> a - 1

nUp’ <- liftDynamics $ readRef nUp

if nUp’ == 1

then passivateProcess

else liftDynamics $

do n <- resourceCount repairPerson

when (n == 1) $

reactivateProcess pid

requestResource repairPerson

repairTime <- liftIO $ exprnd repairRate

holdProcess repairTime

liftDynamics $ modifyRef nUp $ \a -> a + 1

releaseResource repairPerson

machine pid

runDynamicsInStartTime $

32 CHAPTER 4. PROCESS-ORIENTED SIMULATION

do t0 <- starttime

runProcess (machine pid2) pid1 t0

runProcess (machine pid1) pid2 t0

runDynamicsInStopTime $

do x <- readRef totalUpTime

y <- stoptime

return $ x / (2 * y)

main = runSimulation model specs >>= print

After the machine is broken, we decrease the counter of machines currently
up. If only this machine is broken then we passivate it. Otherwise, the both
machines are counted broken and the last of them, i.e. current, reactivates
another in that case if the repairperson is free, i.e. n equals 1.

liftDynamics $ modifyRef nUp $ \a -> a - 1

nUp’ <- liftDynamics $ readRef nUp

if nUp’ == 1

then passivateProcess

else liftDynamics $

do n <- resourceCount repairPerson

when (n == 1) $

reactivateProcess pid

To repair the machine, we acquire the resource. Before we release it, we
increase the counter of the machines.

liftDynamics $ modifyRef nUp $ \a -> a + 1

releaseResource repairPerson

Each of the both machines must know of another. We pass in other’s ID
during the start of the machine.

runProcess (machine pid2) pid1 t0

runProcess (machine pid1) pid2 t0

The rest part should be familiar.
This model can be trivially converted1 to the Aivika experiment[8, 9] and

then analyzed, for example, what distribution the output variable has in the
final simulation time point. The result of such an analysis for parallel 10000
simulation runs in form of the histogram is shown on figure 4.1. The simula-
tion with generating this histogram and other charts, collecting the statistics
summary and so on, lasted only for 1m28.914s on my MacBook Pro.

In Aivika the process-oriented simulation is built on top of the event-driven
simulation. The next chapter shows how the activity-oriented simulation can
also be built on top of the event-driven to be included safely in the main simu-
lation.

1We have to return Simulation ExperimentData from the model, define how to interpret
these data in an Experiment value and, finally, run the experiment.

4.5. EXAMPLE MACHREP3 33

Figure 4.1: The distribution of the output variable for task MachRep3. The
Monte-Carlo simulation with parallel 10000 runs was applied.

34 CHAPTER 4. PROCESS-ORIENTED SIMULATION

Chapter 5

Activity-oriented
Simulation

Under the Activity-oriented paradigm, we break time into tiny increments. At
each time point, we look around at all the activities and check for the possible
occurrence of events. Sometimes this scheme is called time-driven.

In Aivika we have the time built-ins. The dt computation can play a role
of the tiny time increment, although you can specify any other time intervals
and they can be irregular. Also the Dynamics type is a monad. Therefore we
can define a rather complex code in the monad computation including that one
which is necessary to operate on activities. It would be tempting to use this in
the models.

Then in the Haskell programming language the activity-oriented model will
just be a computation of type Dynamics (). To include this computation in the
main simulation, we can use the event queue and one of its functions like these:

enqueueWithTimes :: EventQueue -> [Double] -> Dynamics () -> Dynamics ()

enqueueWithIntegTimes :: EventQueue -> Dynamics () -> Dynamics ()

The first function actuates the event handler in the specified time points.
The second one actuates sequentially the event handlers precisely in the inte-
gration time points.

The functions allow us to safely involve the activity-oriented model in the
main simulation. More generally, if you want to perform some actions sequen-
tially in the specified time points then you should use one of these two functions.
They guarantee that these actions will be sequential and that these actions will
be synchronized with the event queue.

Moreover, you can generate some data in the activity-oriented model, for
example, reading some information from the file and processing it. To pass in
these data to the main model, you can either use the Ref references and Var

variables (that have a memory of past values), or trigger signals with help of the
Signal type. The latter is a generalization of the concept of the .NET event,

35

36 CHAPTER 5. ACTIVITY-ORIENTED SIMULATION

but oriented for working with the dynamic system. This subject goes beyond
the scope of this introductory document.

Now it is time of some practice.

5.1 Example MachRep1 Again

I will take the model[1] from section 3.3. For easiness, I will give the model
description again.

There are two machines, which sometimes break down. Up time is
exponentially distributed with mean 1.0, and repair time is expo-
nentially distributed with mean 0.5. There are two repairpersons,
so the two machines can be repaired simultaneously if they are down
at the same time. Output is long-run proportion of up time. Should
get value of about 0.66.

We have much manual work to do. We have to track each iteration. We
create two counters of iterations. The first counter defines how long the machine
is in a working state. The second counter defines how long the machine is broken.

The code is quite routine. The most interesting thing is that how we involve
the activity-oriented model in the main simulation. Note that this model is less
accurate than the previous ones as it rounds the time intervals1. Also it can be
more slow. Such models will be usually more slow as we have to take a relatively
tiny time increment to model the problem adequately.

import System.Random

import Control.Monad.Trans

import Simulation.Aivika.Dynamics

import Simulation.Aivika.Dynamics.Simulation

import Simulation.Aivika.Dynamics.Base

import Simulation.Aivika.Dynamics.EventQueue

import Simulation.Aivika.Dynamics.Ref

upRate = 1.0 / 1.0 -- reciprocal of mean up time

repairRate = 1.0 / 0.5 -- reciprocal of mean repair time

specs = Specs { spcStartTime = 0.0,

spcStopTime = 1000.0,

spcDT = 0.05,

spcMethod = RungeKutta4 }

exprnd :: Double -> IO Double

exprnd lambda =

do x <- getStdRandom random

return (- log x / lambda)

1Such an inaccuracy is not necessary as we could use exact time intervals but it would
probably require to use the recursive do-notation as we would have to calculate these intervals
after they would be passed in to some variation of the enqueue function which we would
probably have to write manually. But this is an open question.

5.1. EXAMPLE MACHREP1 AGAIN 37

model :: Simulation Double

model =

do queue <- newQueue

totalUpTime <- newRef queue 0.0

let machine :: Simulation (Dynamics ())

machine =

do startUpTime <- newRef queue 0.0

-- a number of iterations when

-- the machine works

upNum <- newRef queue (-1)

-- a number of iterations when

-- the machine is broken

repairNum <- newRef queue (-1)

-- create a simulation model

return $

do upNum’ <- readRef upNum

repairNum’ <- readRef repairNum

let untilBroken =

modifyRef upNum $ \a -> a - 1

untilRepaired =

modifyRef repairNum $ \a -> a - 1

broken =

do writeRef upNum (-1)

-- the machine is broken

startUpTime’ <- readRef startUpTime

finishUpTime’ <- time

dt’ <- dt

modifyRef totalUpTime $

\a -> a +

(finishUpTime’ - startUpTime’)

repairTime’ <-

liftIO $ exprnd repairRate

writeRef repairNum $

round (repairTime’ / dt’)

repaired =

do writeRef repairNum (-1)

-- the machine is repaired

t’ <- time

dt’ <- dt

writeRef startUpTime t’

upTime’ <-

liftIO $ exprnd upRate

writeRef upNum $

round (upTime’ / dt’)

result | upNum’ > 0 = untilBroken

| upNum’ == 0 = broken

| repairNum’ > 0 = untilRepaired

38 CHAPTER 5. ACTIVITY-ORIENTED SIMULATION

| repairNum’ == 0 = repaired

| otherwise = repaired

result

-- create two machines with type Dynamics ()

m1 <- machine

m2 <- machine

-- start the time-driven simulation of the machines

-- through the event queue

runDynamicsInStartTime $

do enqueueWithIntegTimes queue m1

enqueueWithIntegTimes queue m2

-- return the result in the stop time

runDynamicsInStopTime $

do x <- readRef totalUpTime

y <- stoptime

return $ x / (2 * y)

main = runSimulation model specs >>= print

The activity-oriented simulation requires much manual work. Compare with
that how easily we could define the same model under the event-oriented and
process-oriented paradigms.

As before, the activity-oriented simulation uses the event queue. The next
chapter shows how the same queue can be applied to modeling the agents.

Chapter 6

Agent-based Modeling

The agent-based modeling is quite different in comparison with DES and System
Dynamics. The main entity is an agent that acts as a state machine. The states
can have children. The states can be activated, or deactivated. All ancestors
of the active state are considered implicitly active, but there is always only one
selected active state.

The state hierarchy represents a forest of trees. We can modify this forest
dynamically during simulation. We can add new states, define their activation
and deactivation computations and then make some of these states active, se-
lecting one of them as the down-most active state. Its ancestor line will be
activated. Other states will be deactivated if required. The ancestor remains
activated when the new selected state also belongs to its line. The states are
activated and deactivated only in case of need.

Also we can assign the timer and timeout handlers to each active state.
These handlers are computations that are actuated in the specified amount of
time. This is what gives a moving force to the agents making them an excellent
tool for modeling some systems.

Aivika supports the basic constructs for the agent-based modeling. As be-
fore, this support is based on the simulation monads. The activation and de-
activation procedures are the Dynamics computations. So are the timer and
timeout handlers. Everything is managed by the event queue.

6.1 Agents

Every agent is bound up with the specified event queue. Every state is bound
up with its agent. Also any state can have a parent state.

module Simulation.Aivika.Dynamics.Agent

data Agent

data AgentState

instance Eq Agent

39

40 CHAPTER 6. AGENT-BASED MODELING

instance Eq AgentState

newAgent :: EventQueue -> Simulation Agent

newState :: Agent -> Simulation AgentState

newSubstate :: AgentState -> Simulation AgentState

agentQueue :: Agent -> EventQueue

stateAgent :: AgentState -> Agent

stateParent :: AgentState -> Maybe AgentState

The agent may have a selected active state. If it is defined then it is always
the down-most state in the line of active states. All ancestors of this state in
the hierarchy forest are considered implicitly active. Other states are deacti-
vated. To request for this down-most active state, we can apply the agentState
function.

agentState :: Agent -> Dynamics (Maybe AgentState)

If the agent was not initiated yet then it has no active state and this function
returns Nothing within the Dynamics computation.

We can initiate the agent and select a new down-most active state with help
of the same function. This is function activateState.

activateState :: AgentState -> Dynamics ()

Each state has the activation and deactivation computations. They are
actuated if necessary. By default they do nothing. We can modify them with
help of the following two functions.

setStateActivation :: AgentState -> Dynamics () -> Simulation ()

setStateDeactivation :: AgentState -> Dynamics () -> Simulation ()

Sometimes, we need to set the transition state for the current state. The
former will be activated right after the latter is activated. It allows activating
the nested states sequentially.

setStateTransition :: AgentState -> Dynamics (Maybe AgentState) -> Simulation ()

What makes the agents interesting for the modeling is the timeout and
timer handlers. These handlers are similar to the event handlers we saw before
and they indeed use the event queue under the hood. Only the timeout and
timer handlers are assigned to some state and they are legitimate while the
corresponded state remains active. After the state is deactivated all its handlers
become outdated and then they are ignored. But you can assign again new
handlers at time of next activating the state.

addTimeout :: AgentState -> Double -> Dynamics () -> Dynamics ()

addTimer :: AgentState -> Dynamics Double -> Dynamics () -> Dynamics ()

6.2. EXAMPLE BASSDIFFUSION 41

The first argument is the state which the handler is assigned to. The sec-
ond argument specifies the time period in which the handler can be actuated,
if the state will remain active. The third argument defines the corresponded
computation.

If the timeout handler is ever actuated then it finishes after the work. On the
contrary, the timer handler adds itself again. It will periodically repeat while
the state remains active. Therefore the time period is defined as a pure value
in the first case and as a computation in the second case. If the time period is
defined as a number then it remains always constant. But if the time period is
defined as the Dynamics computation then it is recalculated each time the timer
handler adds itself again.

The event queue manages all the process here. Aivika creates wrappers for
the timer and timeout handlers and puts these wrappers in the event queue.
Each agent state has an internal version number. When Aivika creates the
handler’s wrapper, it captures the current version value of the state in the
closure. If the state becomes later deactivated then its internal version increases,
which makes the handler’s wrapper with less version number outdated. In such
a case the timeout or timer handler is not actuated even if its wrapper is still
actuated by the event queue. This approach is very simple and efficient enough.

Now we will see how this theory can be applied to practice.

6.2 Example BassDiffusion

An agent-based version of the Bass Diffusion model[2] is described in the Any-
Logic tutorial.

The model describes a product diffusion process. Potential adopters
of a product are influenced into buying the product by advertising
and by word of mouth from adopters — those who have already
purchased the new product. Adoption of a new product driven by
word of mouth is likewise an epidemic. Potential adopters come into
contact with adopters through social interactions. A fraction of these
contacts results in the purchase of the new product. The advertising
causes a constant fraction of the potential adopter population to
adopt each time period.

The model begins similarly. We import the modules as well as define con-
stants, simulation specs and two random functions.

import System.Random

import Data.Array

import Control.Monad

import Control.Monad.Trans

import Simulation.Aivika.Dynamics

import Simulation.Aivika.Dynamics.Simulation

import Simulation.Aivika.Dynamics.EventQueue

import Simulation.Aivika.Dynamics.Agent

42 CHAPTER 6. AGENT-BASED MODELING

import Simulation.Aivika.Dynamics.Ref

n = 500 -- the number of agents

advertisingEffectiveness = 0.011

contactRate = 100.0

adoptionFraction = 0.015

specs = Specs { spcStartTime = 0.0,

spcStopTime = 8.0,

spcDT = 0.1,

spcMethod = RungeKutta4 }

exprnd :: Double -> IO Double

exprnd lambda =

do x <- getStdRandom random

return (- log x / lambda)

boolrnd :: Double -> IO Bool

boolrnd p =

do x <- getStdRandom random

return (x <= p)

Now we create an agent identified with the person who can be in two states:
an adopter or potential adopter. To create the person, we need the event queue.
We place all persons in the array. We need this array to have an access to
random agents at time when the specified adopter tries to convert somebody to
an adopter too.

data Person = Person { personAgent :: Agent,

personPotentialAdopter :: AgentState,

personAdopter :: AgentState }

createPerson :: EventQueue -> Simulation Person

createPerson q =

do agent <- newAgent q

potentialAdopter <- newState agent

adopter <- newState agent

return Person { personAgent = agent,

personPotentialAdopter = potentialAdopter,

personAdopter = adopter }

createPersons :: EventQueue -> Simulation (Array Int Person)

createPersons q =

do list <- forM [1 .. n] $ \i ->

do p <- createPerson q

return (i, p)

return $ array (1, n) list

The agents and states are created within the Simulation computation. Al-
though we could use the recursive do-notation to define in one block, here we
separate two different steps. At the first step we create the objects. At the
second step we define their activation and deactivation computations.

definePerson :: Person -> Array Int Person -> Ref Int -> Ref Int -> Simulation ()

6.2. EXAMPLE BASSDIFFUSION 43

definePerson p ps potentialAdopters adopters =

do setStateActivation (personPotentialAdopter p) $

do modifyRef potentialAdopters $ \a -> a + 1

-- add a timeout

t <- liftIO $ exprnd advertisingEffectiveness

let st = personPotentialAdopter p

st’ = personAdopter p

addTimeout st t $ activateState st’

setStateActivation (personAdopter p) $

do modifyRef adopters $ \a -> a + 1

-- add a timer that works while the state is active

let t = liftIO $ exprnd contactRate -- many times!

addTimer (personAdopter p) t $

do i <- liftIO $ getStdRandom $ randomR (1, n)

let p’ = ps ! i

st <- agentState (personAgent p’)

when (st == Just (personPotentialAdopter p’)) $

do b <- liftIO $ boolrnd adoptionFraction

when b $ activateState (personAdopter p’)

setStateDeactivation (personPotentialAdopter p) $

modifyRef potentialAdopters $ \a -> a - 1

setStateDeactivation (personAdopter p) $

modifyRef adopters $ \a -> a - 1

definePersons :: Array Int Person -> Ref Int -> Ref Int -> Simulation ()

definePersons ps potentialAdopters adopters =

forM_ (elems ps) $ \p ->

definePerson p ps potentialAdopters adopters

When the potential adopter state is activated, we add a timeout handler
with the specified period after which the agent becomes an adopter. The most
difficult part is the activation computation for the adopter state. We add a
timer handler that periodically calls a procedure, where the adopter is trying to
make a random agent an adopter too. Note that the time period for the timer is
specified as the Dynamics computation (through liftIO). It will be recalculated
at every next call giving different random numbers.

activatePerson :: Person -> Dynamics ()

activatePerson p = activateState (personPotentialAdopter p)

activatePersons :: Array Int Person -> Dynamics ()

activatePersons ps =

forM_ (elems ps) $ \p -> activatePerson p

The agent activation is straightforward enough. Every agent begins with the
potential adopter state.

model :: Simulation [IO [Int]]

model =

do q <- newQueue

potentialAdopters <- newRef q 0

adopters <- newRef q 0

ps <- createPersons q

definePersons ps potentialAdopters adopters

runDynamicsInStartTime $

44 CHAPTER 6. AGENT-BASED MODELING

activatePersons ps

runDynamicsInIntegTimes $

do i1 <- readRef potentialAdopters

i2 <- readRef adopters

return [i1, i2]

main =

do xs <- runSimulation model specs

forM_ xs $ \x -> x >>= print

The remained part is simple. We create agents, define and then activate
them. We return the values defined with help of the references. These references
are updated by the agents during their work.

Here is one of the possible results of simulation:

[[500,0],[499,1],[498,2],[498,2],[498,2],[498,2],[495,5],[495,5],

[494,6],[488,12],[488,12],[484,16],[480,20],[478,22],[474,26],

[469,31],[458,42],[448,52],[441,59],[434,66],[426,74],[413,87],

[403,97],[389,111],[375,125],[363,137],[348,152],[336,164],

[323,177],[299,201],[281,219],[255,245],[239,261],[216,284],

[202,298],[187,313],[170,330],[156,344],[141,359],[123,377],

[114,386],[99,401],[83,417],[78,422],[68,432],[61,439],[56,444],

[51,449],[46,454],[42,458],[33,467],[30,470],[28,472],[25,475],

[23,477],[22,478],[20,480],[18,482],[17,483],[11,489],[8,492],

[7,493],[7,493],[7,493],[5,495],[4,496],[3,497],[3,497],[3,497],

[2,498],[2,498],[2,498],[2,498],[2,498],[2,498],[2,498],[2,498],

[2,498],[2,498],[2,498],[2,498]]

This model can be easily converted1 to the Aivika experiment[8, 9] and then
analyzed how sensitive is the model. The result of such an analysis with parallel
1000 simulation runs in form of the deviation chart by rule 3-sigma is shown on
figure 6.1. On my MacBook Pro the Monte-Carlo simulation with generation of
the chart lasted for 9m59.599s2.

The next chapter returns us to the system of differential equations which we
started with.

1We have to return Simulation ExperimentData from the model, define how to interpret
these data in an Experiment value and, finally, run the experiment.

2I used options +RTS -N4 -RTS on my dual-core Intel processor with support of hyper-
threading after compiled the source file with option -threaded.

6.2. EXAMPLE BASSDIFFUSION 45

Figure 6.1: It shows how sensitive is the Bass Diffusion model with 500 agents.
The Monte-Carlo simulation with parallel 1000 runs was applied.

46 CHAPTER 6. AGENT-BASED MODELING

Chapter 7

System Dynamics

The System Dynamics approach allows us to create dynamic system with loop-
backs. Usually, the model is represented as a system of differential equations
(ODEs). It can have stocks such as reservoirs, can have flows and auxiliaries.
The reservoir is just an integral. Then the flow is a summand of the derivative.
We take it with the plus or minus sign depending on that whether the flow is
inflow or outflow. The auxiliaries correspond to other variables.

There are also discrete stocks such as conveyors, ovens and queues. It is
important that their simulation can also be described in terms of the integrating
technique such as the Runge-Kutta method or Euler’s method. Any stock has
a state varying in time. We update sequentially this state in all integration
time points. It looks like that as we would integrate numerically differential
equations.

An idea of the System Dynamics discipline is to define the model both graph-
ically on the diagram and in the equations. The loopbacks are usually explicitly
shown on the diagram which is called a Stock and Flow Map. Stocks are an
origin of these loopbacks. Flows close them.

The ordinary differential equations and difference equations can be defined
in Aivika using the same simulation monads considered above and applying the
recursive do-notation that allows creating recursive bindings for the simulation
variables.

Before we proceed to an example, I will introduce the table functions that
are very useful in such equations. Please refer to the documentation, where you
can find a plenty of other functions including the delay functions of different
kind and order.

Also you can find a rather sophisticated example of the financial model as
described in Vensim 5 Modeling Guide in the distributive of Aivika Experi-
ment Chart[9]. That model depends on external random parameters and the
corresponded Aivika experiment allows us to define based on the Monte-Carlo
simulation how sensitive is the model to these parameters.

47

48 CHAPTER 7. SYSTEM DYNAMICS

7.1 Table Functions

A table function operates on the Dynamics computation that represents a chang-
ing value x. The second argument is a table of constant pairs (x, y). The
resulting computation represents y which is calculated based on the specified
arguments.

There are two table functions in Aivika. The first function uses a linear
interpolation. The second one is a linear stepwise function. Note that the table
must be sorted by value x in the both cases.

module Simulation.Aivika.Dynamics.SystemDynamics

lookupDynamics :: Dynamics Double

-> Array Int (Double, Double)

-> Dynamics Double

lookupStepwiseDynamics :: Dynamics Double

-> Array Int (Double, Double)

-> Dynamics Double

The next example illustrates how these table functions can be used in the
model definition.

7.2 Example FishBank

The Fish Bank model is distributed along with other sample models as a part of
the installation package of Simtegra MapSys[3]. This model is trying to establish
a relation between the amount of fish in the ocean, a number of ships with help
of which this fish is caught and the profit that the ship owners could realize.

Here we are not very interested in the model itself. I just want to illustrate
how the differential equations can be defined in Aivika. Please pay attention
to the fact that the equations are unordered, exactly as in maths or in popular
visual simulation tools.

In the model I will use two new functions which are counterparts of the
standard min and max functions.

minDynamics :: (Ord a) => Dynamics a -> Dynamics a -> Dynamics a

maxDynamics :: (Ord a) => Dynamics a -> Dynamics a -> Dynamics a

The model itself is stated below. The equations are easy to read. We mix
the integrals and auxiliary variables in an arbitrary order.

{-# LANGUAGE RecursiveDo #-}

import Data.Array

import Simulation.Aivika.Dynamics

import Simulation.Aivika.Dynamics.Simulation

import Simulation.Aivika.Dynamics.SystemDynamics

7.2. EXAMPLE FISHBANK 49

specs = Specs { spcStartTime = 0,

spcStopTime = 13,

spcDT = 0.01,

spcMethod = RungeKutta4 }

model :: Simulation Double

model =

mdo let annualProfit = profit

area = 100

carryingCapacity = 1000

catchPerShip =

lookupDynamics density $

listArray (1, 11) [(0.0, -0.048), (1.2, 10.875), (2.4, 17.194),

(3.6, 20.548), (4.8, 22.086), (6.0, 23.344),

(7.2, 23.903), (8.4, 24.462), (9.6, 24.882),

(10.8, 25.301), (12.0, 25.86)]

deathFraction =

lookupDynamics (fish / carryingCapacity) $

listArray (1, 11) [(0.0, 5.161), (0.1, 5.161), (0.2, 5.161),

(0.3, 5.161), (0.4, 5.161), (0.5, 5.161),

(0.6, 5.118), (0.7, 5.247), (0.8, 5.849),

(0.9, 6.151), (10.0, 6.194)]

density = fish / area

fish <- integ (fishHatchRate - fishDeathRate - totalCatchPerYear) 1000

let fishDeathRate = maxDynamics 0 (fish * deathFraction)

fishHatchRate = maxDynamics 0 (fish * hatchFraction)

fishPrice = 20

fractionInvested = 0.2

hatchFraction = 6

operatingCost = ships * 250

profit = revenue - operatingCost

revenue = totalCatchPerYear * fishPrice

ships <- integ shipBuildingRate 10

let shipBuildingRate = maxDynamics 0 (profit * fractionInvested / shipCost)

shipCost = 300

totalProfit <- integ annualProfit 0

let totalCatchPerYear = maxDynamics 0 (ships * catchPerShip)

-- results --

runDynamicsInStopTime annualProfit

main = runSimulation model specs >>= print

The model can be trivially converted to the Aivika experiment[8, 9], for
example, with help of which we can plot the time series for any variables and
their combinations. But if you are interested in something more heavy-weight
then you might want to look at the mentioned financial model, for which the
deviation chart was shown on figure 2.3 in the beginning of this document.

The next chapter summarizes the methods we have considered till now.

50 CHAPTER 7. SYSTEM DYNAMICS

Chapter 8

Advanced Features

We saw that the same simulation monads can describe models under different
paradigms including System Dynamics, Discrete Event Simulation and Agent-
based modeling. Their differences are erased. Everything is reduced ultimately
to some function varying in time whatever complex the model would be. Then
this function is reduced again to a new function of simulation specs.

It is amazing how well this idea suits the functional programming. The
both functions are actually monads, which allows us to build complex models
including the combined discrete-continuous models, or hybrid models.

Initially, Aivika was a very simple proof-of-concept library but now it pro-
vides rather sophisticated features that would be difficult to implement and use
when programming in C++ or Java, for example.

Haskell is very high level programming language of general purpose and
Aivika allows us to make it closer to the modeling language. It seems that
there is an opposite tendency when the developers are trying to make their own
modeling languages closer to the general purpose programming languages.

It is difficult to try to describe everything in the introductory document.
Therefore I will only give a brief description of some topics that I have found
important for the real modeling with help of Aivika.

8.1 Using Variables

The Var variable or its unboxed version UVar is like the Ref reference but it
remembers all its values at every time point when the variable had changed.
The variable has a similar interface but the variable is much slower than the
reference. It is safer but slower. You should make a choice between using the
variable or reference depending on your task.

At least, you cannot use the references in the differential equations but
you can use the variables. It is related to the fact that these equations are
not managed by the event queue. Time that flows in the equations is mostly
unpredictable. Therefore every integral keeps the history of its values in the

51

52 CHAPTER 8. ADVANCED FEATURES

integration time points, for example.

8.2 Using Arrays

There is no need in explicit support of arrays and lists due to the following fact:
the Dynamics and Simulation types are monads and they are also instances
of type class MonadFix. Therefore they allow using the recursive do-notation,
which is necessary if you going to define the arrays of integrals. The arrays just
work with Aivika.

You should only be careful with monadic computations and understand how
they work. A common mistake is to create a meaningless computation, where
a pure value is required.

At the same time, the arrays and lists are explicitly supported in the Aivika
experiments[8, 9] as an available source of simulation data (namely, Series),
although the necessary glue code is very small.

Moreover, you can define any String subscript for your arrays and lists
when displaying the results on the chart, or when saving them in the file, if the
default numeric-based subscript doesn’t suite your needs.

8.3 Using Signals

A signal is a generalization of the .NET concepts of the event and IObservable

but extended to work with dynamic systems safely, especially with those ones
that are synchronized with the event queue.

The characteristic function is the following one which suspends the current
discontinuous process until a signal will be received:

awaitSignal :: Signal a -> Process a

The references and variables trigger signals each time they change.

8.4 Queues LIFO and FIFO

The LIFO and FIFO queues are integrated with all the simulation monads and
signals. They are implemented based on the Resource type.

8.5 External Parameters

The external parameters are naturally defined as the Simulation computations.
Please refer to the documentation. Also please look at the financial model
included as an example in the distributive of Aivika Experiment Chart[9].

8.6. MONTE-CARLO SIMULATION 53

8.6 Monte-Carlo Simulation

The Monte-Carlo simulation is inherently supported in Aivika. It is just enough
to return the simulation data isolated within the Simulation computation.
Then multiple simulation runs can be safely launched in parallel.

8.7 Simulation Experiments

The simulation experiments are implemented in packages Aivika Experiment[8]
and Aivika Experiment Chart[8] which are a natural add-on to the Aivika li-
brary. They allow receiving the results of simulation as charts, tables and so
on. The output of the experiment is a complete HTML page with the results.
Almost every aspect can be customized. There are the deviation chart and
histograms.

The Monte-Carlo simulation is supported in these experiments.

8.8 Gathering Statistics

In the model you can gather statistics, by which then the deviation chart or
histogram can be plotted. The SamplingStats statistics and a list of numbers
can be used as a source of data for the deviation chart in a addition to other
sources. Similarly, the list of numbers can be used as a source of data for
the histogram in addition to other sources. The SamplingStats value is more
efficient computationally than the list.

54 CHAPTER 8. ADVANCED FEATURES

Bibliography

[1] Norm Matloff. Introduction to Discrete-Event Simulation and the SimPy
Language, 2008,
http://heather.cs.ucdavis.edu/ matloff/156/PLN/DESimIntro.pdf

[2] AnyLogic Tutorial. http://www.xjtek.com/anylogic/help

[3] Simtegra MapSys. http://www.simtegra.com

[4] Vensim. http://www.vensim.com

[5] iThink. http://www.iseesystems.com

[6] The F# version of Aivika. http://sourceforge.net/projects/aivika/

[7] The Haskell version of Aivika. http://hackage.haskell.org/package/aivika

[8] The Haskell version of Aivika, facilities for providing the simulation exper-
iments. http://hackage.haskell.org/package/aivika-experiment

[9] The Haskell version of Aivika, charts and histograms for the simulation
experiments. http://hackage.haskell.org/package/aivika-experiment-chart

[10] The Scala version of Aivika. http://github.com/dsorokin/scala-aivika

55

http://heather.cs.ucdavis.edu/~matloff/156/PLN/DESimIntro.pdf
http://www.xjtek.com/anylogic/help
http://www.simtegra.com
http://www.vensim.com
http://www.iseesystems.com
http://sourceforge.net/projects/aivika/
http://hackage.haskell.org/package/aivika
http://hackage.haskell.org/package/aivika-experiment
http://hackage.haskell.org/package/aivika-experiment-chart
http://github.com/dsorokin/scala-aivika

	Introduction
	Dynamic Systems
	Basic Simulation Monads
	Automating Simulation Experiments
	Summary

	Discrete Event Simulation
	Event Queue
	References and Variables
	Example MachRep1

	Process-oriented Simulation
	Discontinuous Processes
	Revised Example MachRep1
	Resources
	Example MachRep2
	Example MachRep3

	Activity-oriented Simulation
	Example MachRep1 Again

	Agent-based Modeling
	Agents
	Example BassDiffusion

	System Dynamics
	Table Functions
	Example FishBank

	Advanced Features
	Using Variables
	Using Arrays
	Using Signals
	Queues LIFO and FIFO
	External Parameters
	Monte-Carlo Simulation
	Simulation Experiments
	Gathering Statistics

